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S1 Materials and methods

S1.1 Flavor network
S1.1.1 Ingredient-compounds bipartite network

The starting point of our research is Fenaroli’s handbook of flavor ingredients (fifth edition [1]),
which offers a systematic list of flavor compounds and their natural occurrences (food ingredients).
Two post-processing steps were necessary to make the dataset appropriate for our research: (A) In
many cases, the book lists the essential oil or extract instead of the ingredient itself. Since these are
physically extracted from the original ingredient, we associated the flavor compounds in the oils
and extracts with the original ingredient. (B) Another post-processing step is including the flavor
compounds of a more general ingredient into a more specific ingredient. For instance, the flavor
compounds in ‘meat’ can be safely assumed to also be in ‘beef” or ‘pork’. ‘Roasted beef’ contains
all flavor compounds of ‘beef” and ‘meat’.

The ingredient-compound association extracted from [1] forms a bipartite network. As the
name suggests, a bipartite network consists of two types of nodes, with connections only between
nodes of different types. Well known examples of bipartite networks include collaboration net-
works of scientists [2] (with scientists and publications as nodes) and actors [3] (with actors and
films as nodes), or the human disease network [4] which connects health disorders and disease
genes. In the particular bipartite network we study here, the two types of nodes are food ingredi-
ents and flavor compounds, and a connection signifies that an ingredient contains a compound.

The full network contains 1,107 chemical compounds and 1,531 ingredients, but only 381
ingredients appear in recipes, together containing 1,021 compounds (see Fig. S1). We project this
network into a weighted network between ingredients only [5, 6, 7, 8]. The weight of each edge
w;; is the number of compounds shared between the two nodes (ingredients) i and j, so that the
relationship between the M x M weighted adjacency matrix w;; and the N x M bipartite adjacency

Figure S1: The full flavor network. The size of a
node indicates average prevalence, and the thickness
of a link represents the number of shared compounds.
All edges are drawn. It is impossible to observe indi-
vidual connections or any modular structure.




3rd eds. | 5th eds.
# of ingredients 916 1507
# of compounds 629 1107
# of edges in I-C network | 6672 36781

Table S1: The basic statistics on two different datasets. The 5th Edition of Fenaroli’s handbook contains much more
information than the third edition.

matrix a;; (for ingredient i and compound k) is given by:

N

wij =Y dixdji
k=1

(S

The degree distributions of ingredients and compounds are shown in Fig. S2.

S1.1.2 Incompleteness of data and the third edition

The situation encountered here is similar to the one encountered in systems biology: we do not
have a complete database of all protein, regulatory and metabolic interactions that are present in
the cell. In fact, the existing protein interaction data covers less than 10% of all protein interactions

estimated to be present in the human cell [9].
To test the robustness of our results against the incompleteness of data, we have performed
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Figure S2: Degree distributions of the flavor network. Degree distribution of ingredients in the ingredient-compound
network, degree distribution of flavor compounds in the ingredient-compound network, and degree distribution of
the (projected) ingredient network, from left to right. Top: degree distribution. Bottom: complementary cumulative
distribution. The line and the exponent value in the leftmost figure at the bottom is purely for visual guide.
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Figure S3: Comparing the third and fifth edition of Fenaroli’s to see if incomplete data impacts our conclusions. The
much sparser data of the 3rd edition (Top) shows a very similar trend to that of the 5th edition (Bottom, repeated
from main text Fig. 3). Given the huge difference between the two editions (Table S1), this further supports that the
observed patterns are robust.
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Figure S4: The backbone of the ingredient network extracted according to [10] with a significance threshold p = 0.04.
Color indicates food category, font size reflects ingredient prevalence in the dataset, and link thickness represents the
number of shared compounds between two ingredients.

the same calculations for the 3rd edition of Fenaroli’s handbook as well. The 5th edition contains
approximately six times more information on the chemical contents of ingredients (Table S1). Yet,
our main result is robust (Fig. S3), further supporting that data incompleteness is not the main
factor behind our findings.

S1.1.3 Extracting the backbone

The network’s average degree is about 214 (while the number of nodes is 381). It is very dense and
thus hard to visualize (see Fig. S1). To circumvent this high density, we use a method that extracts
the backbone of a weighted network [10], along with the method suggested in [11]. For each node,
we keep those edges whose weight is statistically significant given the strength (sum of weight) of
the node. If there is none, we keep the edge with the largest weight. A different visualization of
this backbone is presented in Fig. S4. Ingredients are grouped into categories and the size of the
name indicates the prevalence. This representation clearly shows the categories that are closely

connected.
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Figure S5: Are popular, much-used ingredients more studied than less frequent foods, leading to potential systematic
bias? (A) We plot the number of flavor compounds for each ingredient as a function of the (ranked) popularity of the
ingredient. The correlation is very small compared to the large fluctuations present. There is a weak tendency that the
ingredients mainly used in North American or Latin American cuisine tend to have more odorants, but the correlations
are weak (with coefficients of -0.13 and -0.10 respectively). A linear regression line is shown only if the corresponding
p-value is smaller than 0.05. (B) If there is bias such that the book tends to list more familiar ingredients for more
common flavor compounds, then we can observe the correlation between the familiarity (how frequently it is used
in the cuisine) and the degree of the compound in the ingredient-compound network. The plots show no observable
correlations for any cuisine.

S1.1.4 Sociological bias

Western scientists have been leading food chemistry, which may imply that western ingredients are
more studied. To check if such a bias is present in our dataset, we first made two lists of ingredients:
one is the list of ingredients appearing in North American cuisine, sorted by the relative prevalence
p; (i.e. the ingredients more specific to North American cuisine comes first). The other is a similar
list for East Asian cuisine. Then we measured the number of flavor compounds for ingredients in
each list. The result in Fig. S5A shows that any potential bias, if present, is not significant.

There is another possibility, however, if there is bias such that the dataset tends to list more
familiar (Western) ingredients for more common flavor compounds, then we should observe a cor-
relation between the familiarity (frequently used in Western cuisine) and the degree of compound
(number of ingredients it appears in) in the ingredient. Figure S5B shows no observable correla-
tion, however.

S1.2 Recipes

The number of potential ingredient combinations is enormous. For instance, one could generate
~ 10" distinct ingredient combinations by choosing eight ingredients (the current average per
recipe) from approximately 300 ingredients in our dataset. If we use the numbers reported in
Kinouchi et al. [12] (1000 ingredients and 10 ingredients per recipe), one can generate ~ 10?3 in-
gredient combinations. This number greatly increases if we consider the various cooking methods.
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Table S2: Number of recipes and the detailed cuisines in each regional cuisine in the recipe dataset. Five groups have
reasonably large size. We use all cuisine data when calculating the relative prevalence and flavor principles.

Cuisine set | Number of recipes | Cuisines included
North American 41525 | American, Canada, Cajun, Creole, Southern
soul food, Southwestern U.S.
Southern European 4180 | Greek, Italian, Mediterranean, Spanish, Por-
tuguese
Latin American 2917 | Caribbean, Central American, South American,
Mexican
Western European 2659 | French, Austrian, Belgian, English, Scottish,
Dutch, Swiss, German, Irish
East Asian 2512 | Korean, Chinese, Japanese
Middle Eastern 645 | Iranian, Jewish, Lebanese, Turkish
South Asian 621 | Bangladeshian, Indian, Pakistani
Southeast Asian 457 | Indonesian, Malaysian, Filipino, Thai, Viet-
namese
Eastern European 381 | Eastern European, Russian
African 352 | Moroccan, East African, North African, South
African, West African
Northern European 250 | Scandinavian

Regardless, the fact that this number exceeds by many orders of magnitude the ~ 10° recipes listed
in the largest recipe repositories (e.g. http://cookpad.com) indicates that humans are exploiting
a tiny fraction of the culinary space.

We downloaded all available recipes from three websites: allrecipes.com, epicurious.com, and
menupan.com. Recipes tagged as belonging to an ethnic cuisine are extracted and then grouped
into 11 larger regional groups. We used only 5 groups that each contain more than 1,000 recipes
(See Table S2). In the curation process, we made a replacement dictionary for frequently used
phrases that should be discarded, synonyms for ingredients, complex ingredients that are broken
into ingredients, and so forth. We used this dictionary to automatically extract the list of ingredients
for each recipe. As shown in Fig. 1D, the usage of ingredients is highly heterogenous. Egg,
wheat, butter, onion, garlic, milk, vegetable oil, and cream appear more than 10,000 recipes while
geranium, roasted hazelnut, durian, muscat grape, roasted pecan, roasted nut, mate, jasmine tea,
jamaican rum, angelica, sturgeon caviar, beech, lilac flower, strawberry jam, and emmental cheese
appear in only one recipe. Table S3 shows the correlation between ingredient usage frequency in
each cuisine and in each dataset. Figure. S6 shows that the three datasets qualitatively agree with
each other, offering a base to combine these datasets.

S1.2.1 Size of recipes

We reports the size of the recipes for each cuisine in Table S4. Overall, the mean number of
ingredients per recipe is smaller than that reported in Kinouchi et al. [12]. We believe that it is
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http://cookpad.com

Epicurious vs. Allrecipes | Epicurious vs. Menupan | Allrecipes vs. Menupan

North American 0.93 N/A N/A
East Asian 0.94 0.79 0.82
Western European 0.92 0.88 0.89
Southern European 0.93 0.83 0.83
Latin American 0.94 0.69 0.74
African 0.89 N/A N/A

Eastern European 0.93 N/A N/A
Middle Eastern 0.87 N/A N/A
Northern European 0.77 N/A N/A
South Asian 0.97 N/A N/A
Southeast Asian 0.92 N/A N/A

Table S3: The correlation of ingredient usage between different datasets. We see that the different datasets broadly
agree on what constitutes a cuisine, at least at a gross level.

T
m Epicurious
@ Allrecipes
E Menupan (Korean)

-1 | | | | |
East Southern Latin Western North
Asian European American European American

Figure S6: Comparison between different datasets. The results on different datasets qualitatively agree with each other
(except Latin American cuisine). Note that menupan.com is a Korean website.



North American 7.96
Western European | 8.03
Southern European | 8.86
Latin American 9.38
East Asian 8.96

Northern European | 6.82
Middle Eastern 8.39
Eastern European | 8.39
South Asian 10.29
African 10.45
Southeast Asian 11.32

Table S4: Average number of ingredients per recipe for each cuisine.

mainly due to the different types of data sources. There are various types of recipes: from quick
meals to ones used in sophisticated dishes of expensive restaurants; likewise, there are also various
cookbooks. The number of ingredients may vary a lot between recipe datasets. If a book focuses
on sophisticated, high-level dishes then it will contain richer set of ingredients per recipe; if a
book focuses on simple home cooking recipes, then the book will contain fewer ingredients per
recipe. We believe that the online databases are close to the latter; simpler recipes are likely to
dominate the database because anyone can upload their own recipes. By contrast, we expect that
the cookbooks, especially the canonical ones, contain more sophisticated and polished recipes,
which thus are more likely to contain more ingredients.

Also, the pattern reported in Kinouchi et al. [12] is reversed in our dataset: Western European
cuisine has 8.03 ingredients per recipe while Latin American cuisine has 9.38 ingredients per
recipe. Therefore, we believe that there is no clear tendency of the number of ingredients per
recipe between Western European and Latin American cuisine.
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Figure S7: Number of ingredients per recipe. North American and Western European cuisine shows similar distribu-
tion while other cuisines have slightly more ingredients per recipe.



100000

10000 ¢

1000 -

100 |-

10 | S e

Number of recipes with D duplicates

Number of duplicates, D

Figure S8: If a recipe is very popular, the recipe databases will have a tendency to list more variations of the recipe.
This plot shows that there are many duplicated recipes that share the same set of ingredients. The number of duplicates
exhibits a heavy-tailed distribution.

Yet, there seems to be an interesting trend in our dataset that hotter countries use more ingre-
dients per recipe, probably due to the use of more herbs and spices [13, 14] or due to more diverse
ecosystems. (6.82 in Northern European vs. 11.31 in Southeast Asian). Figure S7 shows the
distribution of recipe size in all cuisines.

S1.2.2 Frequency of recipes

In contrast to previous work [12] that used published cookbooks, we use online databases. Al-
though recipes online are probably less canonical than established cookbooks, online databases
allow us to study much larger dataset more easily. Another important benefit of using online
databses is that there is no real-estate issue in contrast to physical cookbooks that should carefully
choose what to include. Adding a slight variation of a recipe costs virtually nothing to the websites
and even enhances the quality of the database. Therefore, one can expect that online databases
capture the frequency of recipes more accurately than cookbooks.

Certain recipes (e.g. signature recipes of a cuisine) are much more important than others; They
are cooked much more frequently than others. Figure S8 shows that there are many duplicated
recipes (possessing identical sets of ingredients), indicating that popularity is naturally encoded in
these datasets.

S1.3 Number of shared compounds

Figure S9 explains how to measure the number of shared compounds in a hypothetical recipe with
three ingredients.
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S1.4 Shared compounds hypothesis
S1.4.1 Null models

In order to test the robustness of our findings, we constructed several random recipe datasets using
a series of appropriate null models and compare the mean number of shared compounds N be-
tween the real and the randomized recipe sets. The results of these null models are summarized in
Fig. S10, each confirming the trends discussed in the paper. The null models we used are:

(A, B) Frequency-conserving. Cuisine c uses a set of n. ingredients, each with frequency f;. For
a given recipe with N; ingredients in this cuisine, we pick N; ingredients randomly from the
set of all n. ingredients, according to f;. That is the more frequently an ingredient is used,
the more likely the ingredient is to be picked. It preserves the prevalence of each ingredient.
This is the null model presented in the main text.

(C, D) Frequency and ingredient category preserving. With this null model, we conserve the
category (meats, fruits, etc) of each ingredient in the recipe, and when sample random in-
gredients proportional to the prevalence. For instance, a random realization of a recipe with
beef and onion will contain a meat and a vegetable. The probability to pick an ingredient is
proportional to the prevalence of the ingredient in the cuisine.

(E, F) Uniform random. We build a random recipe by randomly choosing an ingredient that is
used at least once in the particular cuisine. Even very rare ingredients will frequently appear
in random recipes.

(G, H) Uniform random, ingredient category preserving. For each recipe, we preserve the cat-
egory of each ingredient, but not considering frequency of ingredients.

Although these null models greatly change the frequency and type of ingredients in the random
recipes, North American and East Asian recipes show a robust pattern: North American recipes
always share more flavor compounds than expected and East Asian recipes always share less flavor
compounds than expected. This, together with the existence of both positive and negative NS’“’Z —

Shared Compounds

Figure S9: For a recipe with three ingredients, we count the number of shared compounds in every possible pair of
ingredients, and divide it by the number of possible pair of ingredients.
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Figure S11: The probability that ingredient pairs that share a certain number of compounds also appear in the recipes.
We enumerate every possible ingredient pair in each cuisine and show the fraction of pairs in recipes as a function of
the number of shared compounds. To reduce noise, we only used data points calculated from more than 5 pairs.

N4 in every null model, indicates that the patterns we find are not due to a poorly selected null
models.

Finally, Fig. S11 shows the probability that a given pair with certain number of shared com-
pounds will appear in the recipes, representing the raw data behind the generalized food-pairing
hypothesis discussed in the text. To reduce noise, we only consider Ny where there are more than
five ingredient pairs.

S1.4.2 Ingredient contributions

To further investigate the contrasting results on the shared compound hypothesis for different
cuisines, we calculate the contribution of each ingredient and ingredient pair to AN;. Since Ny(R)
for a recipe R is defined as

2
Ny(R) = CiNC;j (S2)
S nr(ng—1) nje%'#j‘ d
(where ng is the number of ingredients in the recipe R), the contribution from an ingredient pair
(i, J) can be calculated as following:

L Y 2 >|c,-mc,-| —(ﬁff 2 )|c,-mcj|), (S3)

Ne 57 ;nr(ng — 1 NZ (ng) ((ng) —1

c __
Xij=

13



where f; indicates the ingredient i’s number of occurrences. Similarly, the individual contribution
can be calculated:

. 1 2 2fi Liecfi|GiNCjl
=Y —— Y Janc]||- . S4
ki (Nc )| : ,|> (Nc<nR> Liecfi .

&sinr(ng —1) j#i(j,i€R

We list in Table. S5 the top contributors in North American and East Asian cuisines.
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North American

East Asian

Ingredient i Xi Ingredient i Xi
milk 0.529 rice 0.294
butter 0.511 red bean 0.152
cocoa 0.377 milk 0.055
vanilla 0.239 green tea 0.041
cream 0.154 butter 0.041
cream cheese 0.154 peanut 0.038
egg 0.151 mung bean 0.036
Positive peanut butter 0.136 egg 0.033
strawberry 0.106 brown rice 0.031
cheddar cheese | 0.098 nut 0.024
orange 0.095 mushroom 0.022
lemon 0.095 orange 0.016
coffee 0.085 soybean 0.015
cranberry 0.070 cinnamon 0.014
lime 0.065 enokidake 0.013
tomato -0.168 beef -0.2498
white wine -0.0556 ginger -0.1032
beef -0.0544 pork -0.0987
onion -0.0524 cayenne -0.0686
chicken -0.0498 chicken -0.0662
tamarind -0.0427 onion -0.0541
vinegar -0.0396 fish -0.0458
Negative pepper -0.0356 bell pepper -0.0414
pork -0.0332 || roasted sesame seed | -0.0410
celery -0.0329 black pepper -0.0409
bell pepper -0.0306 shrimp -0.0408
red wine -0.0271 shiitake -0.0329
black pepper -0.0248 garlic -0.0302
parsley -0.0217 carrot -0.0261
parmesan cheese | -0.0197 tomato -0.0246

Table S5: Top 15 (both positive and negative) contributing ingredients to each cuisine.
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