
A Hierarchical Control Architecture for Optimal Guidance and
Navigation of Satellite Formations

Yasaman Pedari1, Himadri Basu2, Calum Buchanan3, James Bagrow4, Luis Duffaut Espinosa1, Mads R. Almassalkhi1,
and Hamid R. Ossareh1

1Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA.
Emails: {ypedari, lduffaut, malmassa, hossareh}@uvm.edu

2Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA 95064, USA.
Email: hbasu@ucsc.edu

3Department of Mathematics, University of Denver, Denver, CO 80210, USA. Email: calum.buchanan@du.edu
4Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405, USA.

Email: jbagrow@uvm.edu

This work considers an autonomous satellite swarm in low Earth orbit that must safely and

efficiently reconfigure under uncertainties. We develop a control architecture that assigns a

desired terminal formation and autonomously drives the swarm from its initial configuration

to that formation within a prescribed time, while meeting requirements on scalability, safety,

fuel efficiency, and resilience to communication failures. The proposed hierarchical approach

separates decision-making across time scales and exploits swarm redundancy to improve

communication-network reliability when available satellites exceed mission-required positions.

The architecture comprises a planning layer and a control layer. The planning layer includes

(i) a network-reliability-maximizing formation planner and (ii) a fuel-optimal, collision-aware

trajectory planner. The control layer includes (i) a real-time trajectory-tracking controller with

obstacle avoidance and (ii) a robust estimator that fuses global positioning system measurements

and inter-satellite ranging to maintain accurate state estimates in the presence of sensor outliers.

The framework assumes identical satellites and axis-decoupled translational actuation, with

attitude stabilized by a separate controller. The architecture is validated through high-fidelity

nonlinear simulations, and hardware-in-the-loop testing of the trajectory planner demonstrates

computational feasibility on flight-class hardware.

Nomenclature
General Notations

∥.∥ 𝑝 : 𝑙𝑝 Norm of a vector, 𝑝 ∈ [1,∞)

[·]𝑖 : Operator that returns the 𝑖-th column when applied to a matrix or the 𝑖-th element when applied to a vector

⌊·⌋ : Floor operator

𝐼𝑝 : Identity matrix of size 𝑝 × 𝑝

0𝑝 , 0𝑝×𝑞 : 𝑝 × 1 Zero vector and 𝑝 × 𝑞 zero matrix

diag(·) : Operator that maps a vector to a square diagonal matrix with the vector entries on the diagonal

N(𝜇, 𝜎) : Normal distribution with mean 𝜇 and standard deviation 𝜎

𝑁 : Number of satellites within the formation

S𝑖 : The 𝑖th satellite within the formation

𝑅det : Detection radius of the inter-satellite distance measurement sensor

𝑅comm : Distance within which a pair of satellites can communicate

𝑅safe : Minimum allowed inter-satellite distance to avoid collision risk

𝑡 𝑓 : Terminal time of the maneuver

𝑘 : Sampling step size

𝐾 : Terminal time-step

𝑇𝑐 : Coarse discretization step-size of the trajectory planner

𝑇 𝑓 : Fine discretization step-size of the trajectory planner

𝑇𝑟 : Discretization step-size of the real-time controller

𝑇𝑒 : Discretization step-size of the real-time estimator

𝑟𝑖 (𝑘) : Relative position of satellite 𝑖 at time-step 𝑘 in the LVLH frame

𝑣𝑖 (𝑘) : Relative velocity of satellite 𝑖 at time-step 𝑘 in the LVLH frame

𝑥𝑖 (𝑘) : Relative state of satellite 𝑖 at time-step 𝑘 in the LVLH frame, defined as 𝑥𝑖 (𝑘) = col
(
𝑟𝑖 (𝑘), 𝑣𝑖 (𝑘)

)
𝑢𝑖 (𝑘) : Control input vector for satellite 𝑖 at time-step 𝑘 in the LVLH frame

xdes : Desired (terminal) relative state matrix of the swarm in the LVLH frame, size 6 × 𝑁

xini : Initial relative state matrix of the swarm in the LVLH frame, size 6 × 𝑁

𝑥∗
𝑖
(𝑘) : Optimal trajectory for the 𝑖th satellite calculated by the trajectory planner

𝑢∗
𝑖
(𝑘) : Optimal control vector for the 𝑖th satellite calculated by the trajectory planner

𝑟𝑖 (𝑘) : Estimated relative position of satellite 𝑖 at time-step 𝑘 in the LVLH frame

𝑣̂𝑖 (𝑘) : Estimated relative velocity of satellite 𝑖 at time-step 𝑘 in the LVLH frame

𝑥𝑖 (𝑘) : Estimated relative state of satellite 𝑖 at time-step 𝑘 in the LVLH frame, defined as 𝑥𝑖 (𝑘) = col
(
𝑟𝑖 (𝑘), 𝑣̂𝑖 (𝑘)

)
2

𝑦𝑖 (𝑘) : Vector of position measurements for the 𝑖th satellite at time step 𝑘 (obtained from both GPS or inter-satellite ranging)

Subscripts and Superscripts

ini = Initial condition (𝑡 = 0)

des = Desired final condition (𝑡 = 𝑡 𝑓)

I. Introduction

A. Motivation

Future space missions aim to observe dynamic events and changing environments in low Earth orbit with a level

of spatial and temporal coverage that cannot be achieved by any single spacecraft. Long-term NASA and ESA

visions describe distributed space systems that operate as a single, highly coordinated virtual instrument, capable of

autonomously reconfiguring to mission objectives [1, 2]. For example, [3] envisions coordinated multi-perspective

observations of the heliosphere. Beyond enabling measurement modalities that exceed a single spacecraft, multiple

satellites can offer greater resilience and versatility than a single monolithic one. They can also deliver higher mission

capability at a fraction of the cost (i.e., in distributed imaging, atmospheric sampling, and in-space assembly of large

structures [4–6]). As a case in point, consider two Earth-imaging missions: Landsat 8 (one large satellite; $855 million)

and Planet Labs’ Dove constellation (hundreds of small satellites; $120 million); both pursue the same imaging goal,

but the latter achieved higher-frequency imaging at a fraction of the cost [7, 8].

In recent years, there has been a surge in formation flights, showing both the promise and the remaining gaps of

multi-satellite missions. Table 1 summarizes more than twenty flown missions from 2000–2025 [9, 10]. In the table, the

missions are classified by (i) autonomy level, where highly autonomous refers to onboard Guidance, Navigation, and

Control (GNC) with only supervisory ground oversight, whereas partial-to-high ground-controlled denotes limited

onboard decision-making, and (ii) inter-satellite separation, where close proximity indicates a mission in which the

inter-satellite separations are around or less than 1 km, and loose formation refers to separations of ∼1–500 km. Note

that Table 1 is not exhaustive and is simply used to identify trends rather than to provide a census. Thus, three patterns

emerge: (1) close-proximity missions have been demonstrated mainly with two-spacecraft pairs; (2) for loose formations,

teams of up to four spacecraft have flown, but most missions remain ground-controlled or only partially autonomous;

and (3) across all cases, demonstrations with more than four spacecraft have not been widely reported.

Taken together, these patterns point to a capability gap: autonomy at scale (i.e., tens or hundreds of satellites),

especially below 1 km. Nevertheless, the benefits of addressing this gap are significant (e.g., improved mission resilience

and flexibility at reduced cost). To address this gap, we consider a formation of small satellites in low Earth orbit (LEO)

with a mission-driven objective (e.g., coverage/observation performance [11] or communication quality [12]). We

3

Table 1 Multi-satellite missions, 2000–2025, categorized by autonomy and separation.

Partial to High Ground-controlled Highly autonomous
Close-proximity formation • AeroCube-10 (2019, N=2)

• OCSD (AeroCube-7B/7C) (2017, N=2)
• CanX-4/CanX-5 (2014, N=2)
• TerraSAR-X/TanDEM-X (2007/2010, N=2)
• EO-1/Landsat-7 (2000, N=2)

• Proba-3 (2024, N=2)
• CPOD (2022, N=2)
• PRISMA (Mango/Tango) (2010, N=2)
• NASA DART/MUBLCOM (2005, N=2)
• Orbital Express (2007, N=2)
• BIROS/BEESAT-4 (2016, N=2)

Loose formation • UNSW M2 A/B (2021, N=2)
• GRACE–FO (2018, N=2)
• MMS (2015, N=4)
• ESA Swarm (2013, N=3)
• ELISA (2011, N=4)
• ESSAIM (2004, N=4)
• GRACE (2002, N=2)
• Cluster II (2000, N=4)

• NASA Starling (2023, N=4)
• V-R3x (2021, N=3)
• Adelis–SAMSON (2021, N=3)

assume that the formation includes more satellites than are required to meet this mission objective, leaving redundancy

in the swarm, and we exploit this redundancy to improve reliability. This setup is consistent with large-swarm and

constellation design architectures [13–15]. For example, in Planet Labs’ PlanetScope [16] and Iridium/Iridium NEXT

constellations [17], coverage requirements are met with fewer prescribed roles than available satellites, leaving excess

satellites to provide robustness. The robustness metric that we optimize for in this paper is the reliability of the

inter-satellite communication network, which enables distributed computations and sensor fusion across the formation.

Under this setup, the goal of our proposed architecture, at a high level, is to assign a desired terminal formation

for the swarm, then to guide and navigate the swarm from its initial state to the desired formation within a prescribed

time. All computations are expected to be carried out autonomously onboard the swarm rather than on the ground, and

the framework must satisfy the following requirements: (i) Scalability: the framework must be able to manage tens

to hundreds of satellites; (ii) Fuel efficiency: it must ensure fuel-efficient maneuvers that respect fuel budgets; (iii)

Safety: it must guarantee robust, collision-free navigation in the presence of modeling uncertainty, disturbances, and

noisy measurements; and (iv) Reliability: it must maintain mission objectives in the presence of hardware failures,

inter-satellite-link (ISL) outages, and sensing dropouts. A high-level diagram of the proposed framework is shown in

Fig. 1. Details will be provided in Section I.C.

We make the following hardware and modeling assumptions about the satellites: each satellite is equipped with GPS

sensors, inter-satellite communication and ranging, and axis-decoupled translational actuation provided by a lower-level

controller. An attitude controller is assumed to decouple attitude from the translational dynamics, so attitude dynamics

are neglected. All satellites are treated as identical, and all inter-satellite links are subject to failures from multiple

sources (sensing outages, communication dropouts, or temporary blockage), which are captured via a probabilistic

link-failure model.

4

B. Literature Review

End-to-end, unified GNC frameworks for satellite swarms are rare in the literature (see, e.g., [18–20]); however,

there is substantial work on their constituent components: (i) Formation planning & reconfiguration, (ii) Collision-aware

guidance & control, and (iii) Relative navigation & state estimation. In what follows, we review the literature within

each component and identify gaps in light of our mission context and requirements:

Formation Planning & Reconfiguration: Formation planning refers to designing the terminal swarm configuration

to achieve mission objectives. Prior work assumed the final swarm geometry largely as a given, often set by mission

design or simple robustness rules without fully exploiting redundancy in the number of agents, see, e.g., [21–24]. In

particular, references [23, 24] take a network robustness perspective that models the swarm as a communication graph

and reasons about connectivity under node and link failures. From a graph-theoretic standpoint, network robustness is

often quantified using surrogates such as algebraic connectivity. However, these surrogates do not directly quantify

connectivity under probabilistic node and link failures. All-terminal reliability does, as the probability the graph remains

connected, but it is computationally intractable to evaluate exactly at scale [25].

Collision-Aware Guidance & Control: There exist a plethora of multi-agent motion planning and control

methodologies, including optimal-control/MPC approaches [26, 27], evolutionary or genetic search [28], local-policy

methods (e.g., artificial potential fields, equilibrium shaping, behavior-based, consensus) [29–31], and leader–follower

architectures [32]. Nevertheless, close-proximity swarms with limited onboard computation/communications, tight

propellant budgets, and large swarm sizes have limitations. For instance, centralized optimal control approaches suffer

from poor scaling in both computation and communication, open-loop policies lack safety guarantees, local policies can

be propellant-inefficient and can fall into undesired equilibria, and leader–follower methods induce single-point failures

and weak feedback on formation quality [33, 34]. These considerations motivate a hierarchical decomposition that

separates global trajectory assignment from fast and constraint-aware tracking.

Relative Navigation & State Estimation: In current formation-flying missions, relative position and velocity are

most commonly estimated using extended and unscented Kalman filters, which propagate a relative dynamic model

and update it using available positioning measurements [35, 36]. The underlying process models typically range

from simplified linearized representations to higher-fidelity ones. In flight, such Kalman-filter-based estimators have

been deployed on missions including PRISMA [35], CanX-4/5 [37], and TanDEM-X [38], where GPS measurements,

sometimes augmented by inter-satellite ranging or other onboard sensors, are fused in real time to provide the relative

state needed for guidance and control. Almost all high-accuracy formation-flying systems rely on some form of

GPS-based relative measurement within these filters.

As a result, as these estimators are mainly driven by GPS-based measurements, any limitations of GPS directly

translate into limitations in navigation performance. For example, the availability and quality of GPS can degrade

during ionospheric activity, under poor satellite geometry (e.g., high latitudes), and due to multipath propagation and

5

P
la

nn
in

g
L

ay
er

C
on

tr
ol

 L
ay

er
1.Inputs:
Prescribed Formation (𝑭)

2. Algorithms:
Step 1: Reliability-Maximizing Node
Placement
Step 2: Terminal Velocities

3. Output:
Desired formation (𝒙ୢୣୱ)

2. Algorithms:
Step 1: Measurement Acquisition
Step 2: Robust filtering

3. Output:
Estimated States (𝒙ෝ)

1. Inputs:

GPS reading (𝑦௜
GPS)

Relative Measurement induced by path ℓ

(𝑦௜,ℓ
rel)

1. Inputs
• Estimated States (𝒙ෝ)
• Desired Final State (𝒙ୢୣୱ)

2. Algorithms:
Step 1: Fuel Matrix Calc.
Step 2: TACA
Step 3: TO
Step 4: SHMPC

3. Output:
Optimal trajectory/actuation (𝒙∗, 𝒖∗)

1. Inputs
• Estimated States (𝒙ෝ)
• Optimal trajectory/actuation (𝒙∗, 𝒖∗)

2. Algorithms:
Step 1: Mode Selection
Step 2: Command Execution

3. Output:
Thruster command
(𝒖)

Fig. 1 Hierarchical Architecture of the GNC framework. The framework is divided into a Planning Layer
(Formation and Trajectory Planning) and a Control Layer (Robust Estimation and Real-Time Control)

reflections [39–41]. When GPS is degraded or denied (e.g., jamming/spoofing), these Kalman filter-based estimators

can accumulate large errors [42]. Robust, outlier-tolerant estimators, e.g., [43], offer a viable path to maintain navigation

quality in such conditions, yet they remain under-deployed in flight systems. While these navigation challenges are

not unique to swarms, close-proximity formations provide abundant inter-satellite relative measurements that enable

cooperative estimation and maintain high-accuracy relative state estimates even when GPS degrades [44].

C. Proposed Framework and Original Contributions

The requirements introduced in Section I.A necessitate decision making across multiple time-scales: from

microsecond safety reactions to hour-level formation redesign. Such operation is inherently multi-time-scale, and no

centralized controller can reason effectively across this bandwidth, especially when each satellite has partial knowledge

of the formation and must cope with noise, uncertainty, hardware failures, and obstacles in real time. These constraints

make a using a centralized controller for the entire swarm computationally infeasible.

To address this gap, we propose an architecture that separates computation-intensive global decision making from

fast, safety-critical execution. Accordingly, we adopt a hierarchical two-layer architecture, shown in Fig. 1. In the

figure, the upper half shows the outer layer, i.e., the Planning Layer (PL). The PL performs computation-intensive

algorithms and includes the formation planner and the trajectory planner. The formation planner in the top-left receives

6

Real-time Seconds Minutes

Fully Decentralized

Centralized

Real-time
Controller
(Sec IV.A)

Robust
Estimator
(Sec IV.B)

TP Step 1. Fuel
Matrix

Calculation
(Sec III.B.1)

TP Step 2. Trajectory
Assignment with CA

(Sec III.B.2)

TP Step 3.
Trajectory

Optimization
(Sec III.B.3)

Control Layer (Sec. IV) Planning Layer (Sec. III)

FP Step 2:
Terminal Velocity

(Sec III.A.2)

FP Step 1: Reliability-
Maximizing Node

Placements (Sec III.A.1)

Trajectory Planner (Sec III.B) Formation Planner (Sec III.A)

Fig. 2 Comparison of the GNC framework components’ computation frequency and implementation strategy.
Implementation types include: Fully Decentralized (on-board/individual) and Centralized (single satellite or
ground computation).

a prescribed mission-defined formation that is underspecified because the swarm contains redundant satellites, then

leverages this redundancy to select a terminal formation that maximizes reliability against inter-satellite-link failures

(Section III.A). The resulting terminal states are provided to the trajectory planner in the top-right, which generates

time-parameterized, collision-free, fuel-efficient trajectories that respect thrust limits, keep-out zones, and timing

requirements (Section III.B). These trajectories are then sent to the inner layer.

The lower half of Fig. 1 shows the inner layer, i.e., the Control Layer (CL). The controller in the bottom-right

computes actuator commands at millisecond time-scales to track the planned trajectories while ensuring collision

avoidance (Section IV.A). The estimator in the bottom-left fuses GPS measurements using outlier-tolerant methods to

maintain accurate relative state estimates under GPS degradation and sensor anomalies (Section IV.B). These estimates

are provided both to the PL trajectory planner and to the real-time controller.

Figure 2 describes the two layers in terms of computation time and whether the computations are centralized or

decentralized. The horizontal axis shows the computation time for each component of the proposed architecture, from

real-time computations in the Control Layer to second-level computations in the Trajectory Planner and minute-level

computations in the Formation Planner. The vertical axis indicates whether each component is implemented in a fully

decentralized manner on board individual satellites (bottom) or in a centralized manner on a single satellite or even on

7

the ground (top).

Note that our requirements impose competing objectives in terms of reliability and fuel efficiency. The proposed

framework targets reliability through the formation planner and fuel efficiency through the trajectory planner, treating

these objectives in a deliberately decoupled manner. This separation preserves computational tractability in the planning

layer at the expense of global optimality. Solving both objectives jointly would lead to a large, nonconvex optimization

problem that is impractical for flight hardware with tight timing constraints [45, 46]. However, simulation results

(Section V) show that mission-level reliability remains high even without explicitly enforcing reliability in the trajectory

planner, and that the resulting trajectories achieve fuel usage comparable to precision formation-flying data.

The contributions of this manuscript can then be summarized as follows. First, we develop a hierarchical, scalable

swarm GNC architecture that integrates (i) a novel connectivity-preserving formation planner based on all-terminal

reliability, extending our prior work in [47] (from 2D, single-node position placement in a fixed-geometry formation to

3D assignment of the full formation, including velocity), (ii) our group’s previously developed fuel- and computationally

efficient trajectory planner [48], and (iii) a novel low-level control layer that couples real-time safety-critical control

with robust state estimation, integrating and extending [49, 50] for scalable formations, into a single end-to-end system.

Thus, the key novelties of the first contribution are extension of our prior work in [47] and the integration of the various

components into a unified framework for swarm GNC. Second, we present high-fidelity simulation validation of the

GNC framework in a CanX-4/5-inspired scenario, benchmarking performance against reported mission results. Third,

we perform hardware-in-the-loop (HIL) testing to assess the computational feasibility of the trajectory planner for

onboard execution.

The rest of the manuscript is organized as follows. Section II develops the relative-dynamics models used across the

framework and for high-fidelity benchmarking. Section III details the planning layer: the formation planner (Sec. III.A)

and the trajectory planner (Sec. III.B). Section IV covers the control layer: the real-time controller (Sec. IV.A) and the

robust estimator (Sec. IV.B). Finally, Section V validates the integrated framework via high-fidelity simulations and

hardware-in-the-loop tests.

II. Satellite Relative Dynamics Modeling
We use two models of satellite relative motion. The first is a high-fidelity nonlinear model from [51] that includes

the dominant LEO perturbations (𝐽2 and atmospheric drag). The second is a linearized 𝐽2 model from [52] that captures

𝐽2 while neglecting air drag. The nonlinear model underpins the formation-flight simulations in Section V. Although

well suited for high-fidelity simulation, using it for predictive tasks such as trajectory planning yields non-convex

problems that become computationally intractable for large swarms, with no practical guarantees of global optimality. A

linear model is therefore required for tractable optimization and efficient planning at scale.

Classical linear models often rely on assumptions that limit accuracy, e.g., circular reference orbits (Clohessy–

8

Wiltshire [53], Schweighart–Sedwick [54]), neglected oblateness and drag, and validity only for small inter-satellite

separations, thus, a model is needed that is linear yet sufficiently accurate for predictive purposes. As shown in [55], the

linearized 𝐽2 model achieves trajectory-prediction errors within 10 m over up to 1.3 orbital periods when the swarm

remains within 1.5 km of the target orbit. Building on these results, we use the linearized 𝐽2 model for predictive tasks

in trajectory optimization and estimation, and, where necessary, in control. We first present the nonlinear model, then

the linearized 𝐽2 model.

A. High-fidelity Nonlinear Model

Satellite relative motion is commonly described in the Local Vertical Local Horizontal (LVLH) frame, a rotating

frame centered on a (real or virtual) reference satellite, whose trajectory defines the target orbit. In the LVLH frame,

one axis points from Earth’s center to the reference satellite (radial outward), a second axis is perpendicular to the

orbital plane and points opposite the orbit normal, and the third axis lies in the orbital plane and points forward along

the reference satellite’s velocity, forming a right-handed frame. Each satellite’s motion in the formation is then defined

in the LVLH frame, i.e., relative to the reference satellite.

The target-orbit dynamics are characterized by six parameters: radial distance 𝜌, radial velocity 𝑣𝑥 , angular

momentum ℎ, Right Ascension of the Ascending Node Ω, inclination 𝑖, and argument of latitude 𝜃. Together, these

uniquely define the orbit and its motion. The equations governing the orbital dynamics are expressed as follows:

¤𝜌 = 𝑣𝑥 (1a)

¤𝑣𝑥 = −
𝜇

𝜌2 +
ℎ2

𝜌3 −
𝑘𝐽2

𝜌4

(
1 − 3 sin2 𝑖 sin2 𝜃

)
− 𝐶∥ ®𝑉𝑎∥𝑣𝑥 (1b)

¤ℎ = −
𝑘𝐽2 sin2 𝑖 sin 2𝜃

𝜌3 − 𝐶∥ ®𝑉𝑎∥
(
ℎ − 𝜔𝑒𝜌2 cos 𝑖

)
(1c)

¤Ω = −
2𝑘𝐽2 cos 𝑖 sin2 𝜃

ℎ𝜌3 − 𝐶∥
®𝑉𝑎∥𝜔𝑒𝜌2 sin 2𝜃

2ℎ
(1d)

¤𝑖 =
𝑘𝐽2 sin 2𝑖 sin 2𝜃

2ℎ𝜌3 − 𝐶∥
®𝑉𝑎∥𝜔𝑒𝜌2 sin 𝑖 cos2 𝜃

ℎ
(1e)

¤𝜃 = ℎ

𝜌2 +
2𝑘𝐽2 cos2 𝑖 sin2 𝜃

ℎ𝜌3 + 𝐶∥
®𝑉𝑎∥𝜔𝑒𝜌2 cos 𝑖 sin 2𝜃

2ℎ
, (1f)

where 𝐽2 = 1.08263 × 10−3, 𝑘𝐽2 = 3
2 𝐽2𝜇𝑅

2
𝑒, 𝑅𝑒 ≈ 6378 km, 𝜇 = 𝐺𝑀 ≈ 3.986 × 1014 m3 s−2 (with 𝐺 = 6.67430 ×

10−11 m3 kg−1 s−2 and 𝑀 = 5.972 × 1024 kg), 𝐶 denotes the air-drag coefficient (shape/surface dependent), ∥ ®𝑉𝑎∥ is the

atmosphere-relative speed, and 𝜔𝑒 ≈ 7.2921 × 10−5 rad s−1.

After identifying the target orbit, the relative motion of the 𝑖-th satellite within the formation, with respect to this

target orbit, is described by the following dynamics, where 𝑟𝑖 ∈ R3 denotes its position in the LVLH frame, 𝑣𝑖 its

9

corresponding velocity, and together they define the satellite state 𝑥𝑖 = col(𝑟𝑖 , 𝑣𝑖):

¤𝑟𝑖 = 𝑣𝑖 , (2a)

¤𝑣𝑖 =



2[𝑣𝑖]2 𝜔𝑧 − [𝑟𝑖]1 (𝜂2
𝑖
− 𝜔2

𝑧) + [𝑟𝑖]2 𝛼𝑧 − [𝑟𝑖]3 ¤𝜔𝑥𝜔𝑧 − (𝜁𝑖 − 𝜁) sin 𝑖 sin 𝜃 − 𝜌(𝜂2
𝑖
− 𝜂2)

−𝐶𝑖 ∥ ®𝑉𝑖 ∥
(
[𝑣𝑖]1 − [𝑟𝑖]2𝜔𝑧

)
−
(
𝐶𝑖 ∥ ®𝑉𝑖 ∥ − 𝐶∥ ®𝑉𝑎∥

)
𝑣𝑥

−2[𝑣𝑖]1 𝜔𝑧 + 2[𝑣𝑖]3 𝜔𝑥 − [𝑟𝑖]1 𝛼𝑧 − [𝑟𝑖]2 (𝜂2
𝑖
− 𝜔2

𝑧 − 𝜔2
𝑥) + [𝑟𝑖]3 𝛼𝑥 − (𝜁𝑖 − 𝜁) sin 𝑖 cos 𝜃

−𝐶𝑖 ∥ ®𝑉𝑖 ∥
(
[𝑣𝑖]2 + [𝑟𝑖]1𝜔𝑧 − [𝑟𝑖]3𝜔𝑥

)
−
(
𝐶𝑖 ∥ ®𝑉𝑖 ∥ − 𝐶∥ ®𝑉𝑎∥

) (
ℎ
𝜌
− 𝜔𝑒𝜌 cos 𝑖

)
−2[𝑣𝑖]2 𝜔𝑥 − [𝑟𝑖]1 𝜔𝑥𝜔𝑧 − [𝑟𝑖]2 𝛼𝑥 − [𝑟𝑖]3 (𝜂2

𝑖
− 𝜔2

𝑥) − (𝜁𝑖 − 𝜁) cos 𝑖

−𝐶𝑖 ∥ ®𝑉𝑖 ∥
(
[𝑣𝑖]3 + [𝑟𝑖]2𝜔𝑥

)
−
(
𝐶𝑖 ∥ ®𝑉𝑖 ∥ − 𝐶∥ ®𝑉𝑎∥

)
𝜔𝑒𝜌 cos 𝜃 cos 𝑖



+ 𝑢𝑖 . (2b)

where

𝜁 =
2𝑘𝐽2 sin 𝑖 sin 𝜃

𝜌4 , 𝜁𝑖 =
2𝑘𝐽2𝜌𝑖𝑍

𝜌5 ,

𝜂2 =
𝜇

𝜌3 +
𝑘𝐽2

𝜌5 −
5𝑘𝐽2 sin2 𝑖 sin2 𝜃

𝜌5 , 𝜂2
𝑖 =

𝜇

𝜌3
𝑖

+ 𝑘𝐽2

𝜌5
𝑖

−
5𝑘𝐽2𝜌

2
𝑖𝑍

𝜌5
𝑖

,

𝜌𝑖 =

√︃
(𝜌 + [𝑟𝑖]1)2 + [𝑟𝑖]22 + [𝑟𝑖]

2
3, 𝜌𝑖𝑍 = (𝜌 + [𝑟𝑖]1) sin 𝑖 sin 𝜃 + [𝑟𝑖]2 sin 𝑖 cos 𝜃 + [𝑟𝑖]3 cos 𝑖,

𝜔𝑥 = ¤𝑖 cos 𝜃 + ¤Ω sin 𝜃 sin 𝑖, 𝜔𝑧 = ¤𝜃 + ¤Ω cos 𝑖,

𝛼𝑥 = ¤𝜔𝑥 , 𝛼𝑧 = ¤𝜔𝑧

.

Here 𝐶𝑖 is the follower’s drag coefficient. The dynamics can be written compactly as

¤𝑥𝑖 = col
(
𝑣𝑖 , G(𝑟𝑖 , 𝑣𝑖 , 𝑡)

)
+ col(0, 𝑢𝑖). (3)

B. 𝐽2 Linearized Model

Following [52], the nonlinear terms 𝑛2
𝑗

and 𝜁 𝑗 in (3) (polynomials in the reciprocals of the components of 𝑟𝑖) admit

a Gegenbauer expansion that is linear in 𝑟𝑖 . Applying this linearization and neglecting air drag yields the first-order

linear time-varying 𝐽2 model.

¤𝑥𝑖 =



03×3 𝐼3

2𝜂2 + 𝜔2
𝑧 +

2𝑘𝐽2
𝜌5

(
1 − sin2 𝑖 sin2 𝜃

)
𝛼𝑧 +

4𝑘𝐽2 sin2 𝑖 sin 2𝜃
𝜌5 −5𝜔𝑥𝜔𝑧

4𝑘𝐽2 sin2 𝑖 sin 2𝜃
𝜌5 − 𝛼𝑧 −

(2𝑘𝐽2 sin2 𝑖 cos2 𝜃

𝜌5 + 𝜂2 − 𝜔2
𝑥 − 𝜔2

𝑧

)
𝛼𝑥 −

𝑘𝐽2 sin 2𝑖 cos 𝜃
𝜌5

−5𝜔𝑥𝜔𝑧 −
(𝑘𝐽2 sin 2𝑖 cos 𝜃

𝜌5 + 𝛼𝑥
)

−
(
𝜂2 − 𝜔2

𝑥 +
2𝑘𝐽2 cos2 𝑖

𝜌5

)
0 2𝜔𝑧 0

−2𝜔𝑧 0 2𝜔𝑥

0 −2𝜔𝑥 0


𝑥𝑖 +


03×3

𝐼3

 𝑢𝑖

(4)

10

The above matrix is time-varying since its coefficients are functions of the orbital parameters 𝜌(𝑡), 𝑖(𝑡), and 𝜃 (𝑡); in

particular, 𝜔𝑥 , 𝜔𝑧 , 𝜂, 𝛼𝑥 , and 𝛼𝑧 vary with these parameters. For implementation, we discretize the above model:

𝑥𝑖 (𝑘+1) = 𝐴(𝑘) 𝑥𝑖 (𝑘) + 𝐵 𝑢𝑖 (𝑘). (5)

The discretization step size is chosen depending on the subproblem under study. Specifically, the trajectory planner and

the estimator use this model at different timescales: the coarse and fine trajectory planner updates occur with periods 𝑇𝑐

and 𝑇 𝑓 , respectively, while the estimator runs with period 𝑇𝑒. Whenever (5) is invoked, the specific sampling period will

be stated explicitly, as it determines the corresponding discrete matrices 𝐴(𝑘) and 𝐵 obtained from Euler discretization

of the continuous-time dynamics in (4).

III. Planning Layer
The planning layer governs the swarm’s high-level decisions by selecting the desired formation and generating the

trajectories to achieve it. As shown in Fig. 1, the planning layer forms the outer layer of the hierarchical architecture

and operates on slower time scales than the control layer. It comprises (i) a formation planner that exploits swarm

redundancy to select a terminal formation with high communication network reliability and (ii) a trajectory planner that

computes fuel-efficient trajectories to reach that formation; together, these components map mission-level formation

specifications to optimal trajectories that the control layer must safely track in real time.

A. Formation Planning

In this section, we address the problem of planning satellite formations with robust communication networks. By

robust, we mean that the communication network is likely to remain connected in the presence of uncertainties which

may render some ISLs inoperable (e.g., due to hardware failures, radiation, atmospheric effects, or obstructions) [56–59].

Recalling the formation redundancy assumption, we assume that the desired terminal geometry is specified only for 𝑀

satellites, with 𝑀 < 𝑁 (where 𝑁 denotes the size of the formation), and is given by F0 ∈ R3×𝑀 . The formation planner

exploits this underspecification of the terminal state to compute a full desired terminal formation for the swarm while

optimizing network reliability.

As ISL failures occur randomly, we model each ISL as independently operational with probability 𝑝 ∈ [0, 1], and

failing with probability 1 − 𝑝. In this work, we quantify the robustness of the network using its all-terminal reliability

defined as the probability that the graph remains connected after each edge fails independently with probability 1− 𝑝 [25].

Note that maximizing all-terminal reliability in a formation by placing the remaining 𝑁 − 𝑀 satellites can be cast as

an optimization problem. This problem is nonconvex and NP-hard, making global optimality difficult to achieve for

large-scale swarms [60]. Rather than assigning positions to all 𝑁 − 𝑀 redundant satellites at once, we adopt a greedy

11

strategy that places them sequentially, each time selecting the placement that maximizes the all-terminal reliability, as in

[47]∗. While this approach does not guarantee global optimality, our simulations show that it achieves near-optimal

reliability with a small loss relative to an exhaustive randomized search, and at a fraction of the computational cost.

The swarm’s communication network is modeled as an undirected graph whose vertices represent satellites and

whose edges represent ISLs; such graphs are commonly referred to as unit ball graphs, generalizing unit disk graphs used

in 2-D settings. Initialize the graph with the 𝑀 prescribed satellites. Let F0 ∈ R3×𝑀 be the matrix whose 𝑗 th column

[F0] 𝑗 ∈ R3 is the LVLH position of satellite 𝑆 𝑗 , and define the normalized position map 𝑓0 (𝑗) = [F0] 𝑗/𝑅comm for

𝑗 ∈ {1, . . . , 𝑀}. We model the communication network by the undirected graph 𝐺0 = (𝑉0, 𝐸0) with 𝑉0 = {1, . . . , 𝑀}

and 𝐸0 = {{𝑖, 𝑗} ⊆ 𝑉0 : ∥ 𝑓0 (𝑖) − 𝑓0 (𝑗)∥2 ≤ 1}. We assume that 𝐺0 is a connected graph, that is, that the prescribed

formation geometry F0 is such that any two satellites are joined by a path of inter-satellite links. Recall that the iterative

algorithm has 𝑁 − 𝑀 iterations. For any iteration 𝑘 , let 𝑓𝑘 : 𝑉𝑘 → R3 assign the normalized LVLH positions, and

define edges by the unit ball rule 𝐸𝑘 =
{
{𝑖, 𝑗} ⊆ 𝑉𝑘 : ∥ 𝑓𝑘 (𝑖) − 𝑓𝑘 (𝑗)∥2 ≤ 1

}
. That is, an edge is included whenever the

normalized LVLH distance between satellites 𝑖 and 𝑗 is at most one. The planner assigns the remaining satellites by

adding one node per iteration: for 𝑘 = 1, . . . , 𝑁 − 𝑀 , add satellite 𝑀 + 𝑘 , choose its position 𝑓𝑘 (𝑀 + 𝑘), and update

𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘) 𝑉𝑘 = {1, . . . , 𝑀 + 𝑘}.

After the final iteration, all𝑁 satellites are assigned and the terminal formation is Fdes = 𝑅comm

[
𝑓𝑁−𝑀 (1) · · · 𝑓𝑁−𝑀 (𝑁)

]
.

Note that here 𝑘 denotes the graph-growth iteration leading to the terminal formation, whereas throughout the rest of the

paper 𝑘 is reserved for the discrete-time sampling index. Throughout this section, we assume the satellites in 𝐺0 are

in general position with respect to the normalized position map 𝑓0, in particular that (i) ∥ 𝑓0 (𝑖) − 𝑓0 (𝑗)∥2 ≠ 2 for all

distinct 𝑖, 𝑗 ∈ 𝑉0, and (ii) no four points { 𝑓0 (𝑖)}𝑖∈𝑉0 lie on the boundary of a radius-1 sphere.

Finally, after the determination of Fdes, the planner must additionally determine terminal velocities vdes ∈ R3×𝑁 for

the formation, chosen so that all satellites share the same specific orbital energy to minimizes along-track drift, helping

the formation preserve relative geometry after reconfiguration [61]. We summarize these design requirements on the

output xdes of the formation planner, where xdes = col(Fdes, vdes), in the following problem statement.

Problem Statement 1.

Given: Prescribed formation geometry F0, communication range 𝑅comm, and link reliability 𝑝.

Find: A terminal formation state xdes = col(Fdes, vdes) such that:

(i) The terminal geometry Fdes preserves the 𝑀 ground-prescribed positions in F0 and assigns the remaining

𝑁 − 𝑀 satellites to positions that iteratively maximize all-terminal reliability of the resulting communication

∗In [47], we provide an algorithm to implement this strategy in 2-D and analyze is effectiveness via simulations. Here, we implement the 3-D
version.

12

network.

(ii) vdes is determined to ensure orbital energy matching across all satellites.

With the problem formally defined, we next outline how the proposed formation planner addresses it at a high level:

Step 0: Activate the formation planner under one of the following conditions: (i) a new prescribed formation

geometry, F0, becomes available through higher-level mission planning; (ii) either satellite failures (requiring

removal of the satellite and its ISLs) or individual ISL failures occur, necessitating changes in the desired

formation design.

Step 1: Iteratively add the remaining 𝑁 − 𝑀 satellites to maximize all-terminal reliability. For each iteration,

1.1. Enumerate all feasible neighborhoods that the new node can have in 𝐺𝑘−1; that is, all subsets

𝑈 ⊆ 𝑉𝑘−1 of satellites in 𝐺𝑘−1 that are contained in a radius-1 sphere which contains no points in

𝑉𝑘−1 \𝑈.

1.2. For each candidate neighborhood 𝑈, estimate the reliability of the graph obtained by adding a

vertex with neighborhood𝑈 to𝐺𝑘−1. The neighborhood that yields the maximum reliability,𝑈max,

is selected.

1.3. Compute the optimal position 𝑐∗ ∈ R3 as the center of the smallest enclosing sphere for 𝑈max.

Update the formation to 𝐺𝑘 , where the (𝑀 + 𝑘)-th node is inserted at 𝑐∗ and is appended to 𝐺𝑘−1.

Step 2: Assign terminal velocities vdes consistent with Fdes:

2.1. Compute vdes such that all satellites have the same orbital energy. The output of the formation

planning block is then xdes = col(Fdes, vdes) ∈ R6×𝑁 .

Regarding the estimation of all-terminal reliability in Step 1.2, we note that computing this value, even for the

unit ball graphs considered here is ♯P-complete [62]. Therefore, in this work, whenever we require this value, we

approximate it via Monte Carlo simulations. This method works by repeatedly sampling probabilistic graphs obtained

from the original graph by deleting each edge independently with probability 1 − 𝑝. A particularly efficient Monte

Carlo scheme for this task is described in [63]. We now describe each step in detail.

1. Iterative Reliability-Maximizing Placement of Redundant Satellites (Step 1)

This step determines where to place the (𝑀 + 𝑘)-th satellite within the current graph 𝐺𝑘−1 so as to maximize the

all-terminal reliability of the updated graph. The procedure is carried out iteratively for 𝑘 = 1, . . . , 𝑁 − 𝑀, thereby

placing the redundant satellites from node 𝑀 + 1 through node 𝑁 . We now detail the three-step procedure (Steps

1.1–1.3) introduced earlier that is used to compute each placement.

We present an algorithm that enumerates the setU of all feasible neighborhoods for the (𝑀+𝑘)-th node (denoted

by 𝑣 in this section) to be added to 𝐺𝑘−1, i.e., all subsets of 𝑉𝑘−1 that could be joined to 𝑣 by an edge in 𝐺𝑘 . The

13

Fig. 3 For a fully-connected graph with three nodes, each subfigure shows multiple unit circles centered at
feasible positions of 𝑣 that realize the same neighborhood𝑈 and one representative sphere with two vertices of𝑈
on its boundary, per Prop. 1.

neighborhood of 𝑣, with position 𝑐, in 𝐺𝑘−1 is the set of vertices 𝑢 ∈ 𝑉𝑘−1 such that ∥ 𝑓𝑘−1 (𝑢) − 𝑐∥2 ≤ 1. Hence, to

enumerateU, we must enumerate all subsets𝑈 ⊆ 𝑉𝑘−1 that can be enclosed by a unit ball containing every vertex in𝑈

while excluding all vertices in 𝑉𝑘−1 \𝑈, ensuring that𝑈 is the exact neighborhood of the added vertex. We call a unit

ball 𝑆, 𝑈-realizing if (i) 𝑓𝑘−1 (𝑗) lies in the interior of 𝑆 for every 𝑗 ∈ 𝑈, and (ii) every point in 𝑉𝑘−1 \𝑈 lies outside

𝑆. The family of𝑈-realizing spheres is typically infinite: translating or rotating any𝑈-realizing sphere preserves this

property until a vertex of 𝑉𝑘−1 meets or leaves the boundary of 𝑆. Thus, neighborhood changes occur only when the

boundary passes through a vertex. An illustration of this point is shown in Fig. 3, where a fully connected graph of

three nodes is depicted. Each subfigure corresponds to a different neighborhood𝑈. For each neighborhood, multiple

faded circles illustrate multiple𝑈-realizing spheres that realize the same neighborhood and lose this property only at

boundary events. The following proposition asserts the existence of what we refer to as a representative sphere for the

(infinite) family of𝑈-realizing spheres associated with the same neighborhood, namely, a sphere that has at least two

points from 𝑉𝑘−1 on its boundary and contains all other points in𝑈 (but none in 𝑉𝑘−1 \𝑈) in its interior.

Proposition 1. Let 𝑉𝑘−1 be a set of at least two points in R3, and let 𝑈 ⊆ 𝑉𝑘−1 contain at least two points. If there

exists a 𝑈-realizing radius-1 sphere that contains 𝑈 in its interior but no points in 𝑉𝑘−1 \𝑈, then there also exists a

radius-1 sphere with two points 𝑆1, 𝑆2 ∈ 𝑉𝑘−1 on its boundary, and having precisely𝑈 \ {𝑆1, 𝑆2} as the set of points

from 𝑉𝑘−1 in its interior.

Proof. Let 𝑆 be a radius-1 sphere containing every point in 𝑈 but no points in 𝑉𝑘−1 \𝑈 in its interior. If some point

from 𝑉𝑘−1 lies on the boundary of 𝑆, call it 𝑆1. Otherwise, let 𝑆1 denote the point in 𝑉𝑘−1 closest in distance to the

boundary of 𝑆, and translate 𝑆 in the direction of 𝑆1 until 𝑆1 lies on its boundary. Next, we rotate this translation of 𝑆

around the point 𝑆1 on its boundary (in any direction) until a second point 𝑆2 lies on its boundary. We are sure to find

such a point 𝑆2 since |𝑈 | ≥ 2.

14

By the representative-sphere result in the preceding proposition, any feasible neighborhood can be represented by a

unit ball whose boundary contains exactly two vertices, say 𝑆1 and 𝑆2. Starting from this representative sphere, if we

rotate while keeping 𝑆1 and 𝑆2 on its boundary (i.e., rotations about the line 𝑆1𝑆2), then the realized neighborhood

remains unchanged under this motion until the boundary first meets a third vertex 𝑆3. At such a three-point boundary

contact, let 𝐴 denote the set of all non-boundary vertices currently in the interior of 𝑆, and let 𝐵 ⊆ {𝑆1, 𝑆2, 𝑆3} be any

subset of the three boundary vertices (Recall that we assume that no four points lie on the boundary of a unit ball and

that no two of 𝑆1, 𝑆2, and 𝑆3 are of normalized distance exactly 2 apart). In the following proposition, we show that,

under a general-position assumption, arbitrarily small admissible motions of the representative sphere can toggle each

of 𝑆1, 𝑆2, and 𝑆3 independently across the boundary, without including or excluding any other points from 𝑉𝑘−1. To

further clarify, Fig. 4 shows a fully connected graph of 10 nodes. The same unit ball with three points exactly on its

boundary is shown in all subfigures. In each subfigure, an additional sphere is shown to illustrate how toggling the

original sphere enables realization of all possible 𝐵 subsets, i.e., finding a sphere that arbitrarily includes or excludes

boundary points. The following proposition formalizes this observation.

Proposition 2. Let 𝑆1, 𝑆2, and 𝑆3 be distinct points in R3 which are pairwise of distance strictly less than 2 apart and

which lie on the boundary of a radius-1 sphere 𝑆. If 𝐴 is a finite set of non-boundary points in 𝑆 and 𝐵 ⊆ {𝑆1, 𝑆2, 𝑆3},

then there is a radius-1 sphere containing 𝐴 ∪ 𝐵 but not containing {𝑆1, 𝑆2, 𝑆3} \ 𝐵.

Proof. Note that {𝑆1, 𝑆2, 𝑆3} contains no two antipodal points on 𝑆 since the distances between them are strictly less

than 2. Consider the line segment 𝐿 with endpoints 𝑆1 and 𝑆2. By rotating 𝑆 about 𝐿, we can either include or exclude

𝑆3 from the interior of a radius-1 sphere 𝑆′ with 𝑆1 and 𝑆2 on its boundary. If exactly one of 𝑆1 or 𝑆2 is in 𝐵, we shift 𝑆′

in the direction of the vector from 𝑆1 to 𝑆2 to include 𝑆2 but not 𝑆1, or in the direction of the vector from 𝑆2 to 𝑆1 to

include 𝑆1 but not 𝑆2. If both 𝑆1 and 𝑆2 are in 𝐵, we shift 𝑆′ in the direction of the vector from its center through the

midpoint of 𝐿. If neither 𝑆1 nor 𝑆2 is in 𝐵, we shift the sphere 𝑆′ in the opposite direction.

Propositions 1 and 2 are then utilized in the following theorem, which specifies the enumeration of feasible

neighborhoods for a newly added node.

Theorem 1. Let 𝑉𝑘−1 ⊂ R3 be a finite set of at least three points in general position. A subset𝑈 ⊆ 𝑉𝑘−1 with |𝑈 | ≥ 3 is

a feasible neighborhood for the node 𝑣 to be added if and only if𝑈 ∈ U, where

U =

𝐴 ∪ 𝐵
����� ∃ distinct 𝑆1, 𝑆2, 𝑆3 ∈ 𝑉𝑘−1 and a unit ball 𝑆 ⊂ R3 with 𝑆1, 𝑆2, 𝑆3 ∈ 𝜕𝑆,

𝐴 =
(
𝑆 ∩𝑉𝑘−1

)
\ {𝑆1, 𝑆2, 𝑆3}, 𝐵 ⊆ {𝑆1, 𝑆2, 𝑆3}

 .
Here, 𝜕𝑆 denotes the boundary of the sphere 𝑆.

Proof. The proof is omitted for conciseness; it follows directly from Propositions 1 and 2.

15

Fig. 4 Satellites 𝑆1, 𝑆2, 𝑆3 lie on the boundary of the unit ball 𝑆. Gold points denote the interior set 𝐴. Each
panel corresponds to a choice of 𝐵 ⊆ {𝑆1, 𝑆2, 𝑆3} and shows a sphere 𝑆′ with 𝐴 ∪ 𝐵 ⊂ int(𝑆′); filled markers
indicate S𝑖 ∈ 𝐵, and hollow markers indicate exclusion.

We now present an algorithm, based on the theorem above, to enumerate all feasible neighborhoods for the

to-be-added node 𝑣. Algorithm 1 proceeds as follows. For each unordered pair {𝑆1, 𝑆2} ⊆ 𝑉𝑘−1 with ∥𝑆1 − 𝑆2∥2 < 2,

construct a unit ball 𝑆 with 𝑆1, 𝑆2 ∈ 𝜕𝑆, and let 𝐴 :=
(
𝑆 ∩ (𝑉𝑘−1)

)
\ {𝑆1, 𝑆2} denote the set of interior vertices. By

Proposition 2, initialize the neighborhood set asU ← {𝐴 ∪ 𝐵 | 𝐵 ⊆ {𝑆1, 𝑆2}}. The ball 𝑆 is then rotated about the line

𝑆1𝑆2 (allowing infinitesimal radius-preserving translations), and the realized neighborhood is recorded until a boundary

event occurs in which a third vertex 𝑆3 meets 𝜕𝑆. At such an event, a toggle operation is used to enumerate all sets

of the form 𝐴 ∪ 𝐵 with 𝐵 ⊆ {𝑆1, 𝑆2, 𝑆3}. Points near 𝑆1𝑆2 (those swept by rotating the shortest boundary arc from

𝑆1 to 𝑆2) never exit the ball, while all other points both enter and exit exactly once per full rotation. Entry and exit

angles follow from elementary trigonometry (cf. [47] for the two-dimensional case); for simplicity, explicit formulas are

omitted. In practice, the rotation is discretized into 𝑙 steps of size 2𝜋/𝑙. During this sweep, whenever a vertex enters

(resp. exits) the ball, it is inserted into (resp. removed from) the current interior set, and the resulting interior set and

its unions with {𝑆1, 𝑆2} are appended toU. After one full rotation, all feasible interior sets for the pair {𝑆1, 𝑆2} are

recorded. Repeating this procedure over all pairs with ∥𝑆1 − 𝑆2∥2 < 2, and invoking Proposition 1, yields all feasible

maximal† neighborhoods. Duplicate neighborhoods are removed automatically sinceU is maintained as a set.

Equivalently, one can think of Algorithm 1 enumerating the regions of intersection cut out by the unit balls centered

at the points in 𝑉𝑘−1. While there are exponentially many possible neighborhoods for a vertex in an abstract graph, it is
†The algorithm would not, for instance, find a feasible neighborhood consisting of a single satellite surrounded by a number of others at distance

1.1. However, such a neighborhood would not be maximal, and thus would not be a candidate for𝑈max.

16

Algorithm 1: Finding subsets contained in a sphere
Result: SetU of sets of points contained in a radius-1 sphere
Input: Finite set 𝑉𝑘−1 of at least three points in R3, rotation discretization step 𝑙
InitializeU = {}
for 𝑆1 ≠ 𝑆2 ∈ 𝑉𝑘−1 with ∥𝑆1 − 𝑆2∥2 < 2 do

𝑆 = arbitrary radius-1 sphere with 𝑆1, 𝑆2 on boundary, 𝜃 = 0,𝑈 = {𝑢 ∈ 𝑉𝑘−1 : 𝑢 ∈ interior of 𝑆}
Add𝑈,𝑈 ∪ {𝑆1},𝑈 ∪ {𝑆2}, and𝑈 ∪ {𝑆1, 𝑆2} toU
do

Rotate 𝑆 around the line segment 𝑆1𝑆2 according to 𝜃 until a third point 𝑆3 ∈ 𝑉𝑘−1 is on the boundary
if 𝑆3 ∈ 𝑈 then

Delete 𝑆3 from𝑈

Add𝑈,𝑈 ∪ {𝑆1},𝑈 ∪ {𝑆2}, and𝑈 ∪ {𝑆1, 𝑆2} toU
end
if 𝑆3 ∈ 𝑉 \𝑈 then

Add 𝑆3 to𝑈
Add𝑈,𝑈 ∪ {𝑆1},𝑈 ∪ {𝑆2}, and𝑈 ∪ {𝑆2, 𝑆3} toU

end
𝜃 ← 𝜃 + 2𝜋

𝑙

while 𝜃 < 2𝜋;
end
returnU

shown in [64] that 𝑁 spheres partition R3 into at most (𝑁3 − 3𝑁2 + 8𝑁)/3 regions. The arrangement bound implies

𝑂 (𝑁3) distinct feasible neighborhoods, which matches the runtime of our enumeration. Indeed, we perform 𝑂 (𝑁2)

unit-sphere sweeps (one per boundary pair {𝑆𝑖 , 𝑆 𝑗 }), and each sweep has at most 𝑂 (𝑁) contact events, yielding 𝑂 (𝑁3)

time (up to polylogarithmic factors).

Having obtained the set of all possible neighborhoods U for a new vertex via Algorithm 1 (Step 1.1), we now

determine the optimal neighborhood 𝑈max ∈ U that maximizes the overall graph reliability upon insertion of vertex

𝑣. Given the positions of the fixed vertices { 𝑓𝑘 (1), . . . , 𝑓𝑘 (𝑀 + 𝑘 − 1)} ⊂ R3, we formulate this as an optimization

problem where the decision variable is the choice of neighborhood𝑈 ∈ U, i.e.,

𝑈max ∈ arg max
𝑈∈U

Rel
(
(𝐺𝑘−1)+𝑣 (𝑈)

)
,

where (𝐺𝑘−1)+𝑣 (𝑈) is the graph obtained by adding node 𝑣 to the graph 𝐺𝑘−1 and connecting 𝑣 exactly to the vertices

in𝑈.

Having found the neighborhood𝑈max for 𝑣 that provides the most reliable graph (Step 1.2), we turn to assigning a

particular location to this vertex (Step 1.3). In general, the optimal location may depend on the specific mission for the

satellite swarm, but a natural candidate is the point that minimizes the maximum distance to a vertex in𝑈max. This point

is precisely the center of the smallest enclosing sphere for the desired neighborhood. One can use Welzl’s randomized

algorithm [65] to find this center in linear time. We take the optimal position for𝑈max to be 𝑐∗ and update the vertex

location accordingly by setting 𝑓𝑘 (𝑣) ← 𝑐∗.

17

2. Assignment of Terminal Velocities (Step 2)

So far, the formation planner has provided the desired formation 𝐺𝑁−𝑀 = (𝑉𝑁−𝑀 , 𝐸𝑁−𝑀) with embedding

𝑓𝑁−𝑀 : 𝑉𝑁−𝑀 → R3; the unnormalized terminal positions of the formation in the chief’s LVLH frame are

Fdes = col(𝑓𝑁−𝑀 (1), . . . , 𝑓𝑁−𝑀 (𝑁))𝑅comm, and the next step is to assign the corresponding velocity vectors vdes. We

assign the velocities to ensure the entire formation evolves with the same mean motion and preserves the designed

configuration over time. Following [61], the velocities are adjusted so that every satellite has the same specific

orbital energy, guaranteeing identical mean motion and preventing secular drift of the formation. A closed-form

velocity assignment satisfying this condition is given in [61] and is used in our work. Finally, the full formation

state xdes = col(Fdes, vdes) is the output of the formation planner and an input to the trajectory planner (next section),

determining the terminal state of the formation.

In summary, this section developed a computationally tractable formation planner that, given desired positions for

only a subset of satellites, autonomously assigns a terminal formation for the entire swarm that maximizes network

reliability. Key innovations that enable this are (i) explicitly leveraging redundancy by using the remaining satellites to

maximize network reliability, thereby reducing dependence on the ground and allowing the swarm to adapt autonomously

to failures, (ii) adopting all-terminal reliability as the network reliability metric, which is rarely used in satellite formation

planning and accurately captures the probability of staying connected under probabilistic link and node failures than

common graph surrogates, (iii) solving the problem iteratively by placing the redundant satellites one by one rather

than solving a single coupled optimization for all of them at once, which keeps the computation manageable while

giving up little in terms of all-terminal reliability, (iv) introducing graph-based abstractions that enumerate feasible

neighborhoods in the induced unit ball graph, reducing the continuous search over three-dimensional positions to a

finite set of candidates that can be evaluated efficiently, and (v) assigning terminal velocities so that all satellites share

the same specific orbital energy (and hence similar orbital periods), which helps preserve the designed communication

network over time.

B. Trajectory Planning (TP)

In this section, we provide an overview of our trajectory planner, originally introduced in [48] as TP2 and included

here for the sake of completeness. The trajectory planner, given the current (initial) state xini ∈ R6×𝑁 of the formation

as provided by the estimator in the control layer, is responsible for planning trajectories and optimal actuation sequences

𝑥∗
𝑖

and 𝑢∗
𝑖

that are fuel-optimal and safe, and that take the formation to the terminal formation planned by the FP, xdes,

over a predetermined duration 𝑡 𝑓 . We summarize the design requirements in the following problem statement.

18

Problem Statement 2.

Given: The initial swarm state xini; desired terminal state xdes; terminal time 𝑡 𝑓 ; planner fine sampling period 𝑇 𝑓 ;

planner coarse sampling period 𝑇𝑐; safety radius 𝑅safe; actuator limit 𝑢max; and slew-rate bounds 𝑢𝑟 ,min, 𝑢𝑟 ,max.

Find: For each 𝑖 ∈ {1, . . . , 𝑁}, an optimal trajectory x∗
𝑖
(𝑘) and actuation sequence u∗

𝑖
(𝑘) over 𝑘 = 0, . . . , 𝐾,

where 𝐾 = ⌊𝑡 𝑓 /𝑇 𝑓 ⌋, such that:

(i) Safety: ∥r∗
𝑖
(𝑘) − r∗

𝑗
(𝑘)∥2 ≥ 𝑅safe for all 𝑖 ≠ 𝑗 and all 𝑘 .

(ii) Boundary conditions: x∗
𝑖
(0) = [xini]𝑖 and x∗

𝑖
(𝐾) = [xdes]𝑖 .

(iii) Fuel optimality: The total fuel proxy is minimized, min
∑𝑁
𝑖=1

∑𝐾−1
𝑘=0 ∥u∗𝑖 (𝑘)∥1.

(iv) Robustness: Robustness to modeling uncertainties and perturbations (as defined in Section 2) is maintained.

(v) Actuation limits: actuation satisfies ∥u∗
𝑖
(𝑘)∥∞ ≤ 𝑢max, and 𝑢𝑟 ,min ≤ u∗

𝑖
(𝑘+1) − u∗

𝑖
(𝑘) ≤ 𝑢𝑟 ,max, ∀ 𝑖, 𝑘 .

(vi) Computational scalability: The optimization solves within 1 minute of computation for 𝑁 > 10 satellites.

Our TP addresses this problem through 4 steps:

Step 0: Activate the trajectory planner under one of the following: (i) a new terminal formation xdes becomes

available from the formation planner; (ii) the Shrinking Horizon Model Predictive Control (SHMPC) logic

(defined in this section) triggers a timer, upon which the TP recomputes optimal trajectories for robustness

to uncertainties.

Step 1: Fuel Matrix calculation: the cost of each satellite going to each destination is evaluated.

Step 2: Trajectory Assignment with Collision Avoidance (TACA): assign which satellite targets which destination,

subject to collision-avoidance constraints.

Step 3: Trajectory Optimization (TO): given the assignment, each satellite finds the most fuel-optimal path to its

destination.

Step 4: Shrinking Horizon Model-Predictive Control (SHMPC): a predictive controller whose prediction horizon

initial recedes until it reaches a terminal condition and then the planning horizon shrinks. The control

schedules and resulting predicted trajectories are regularly re-optimized to adapt to model uncertainties and

disturbances.

In what follows, we present each step one by one.

1. Fuel matrix calculation (Step 1)

In step 1, the satellites compute, in a fully decentralized way (i.e., using local computing resources), the minimum

fuel required to go from their current location as given by the estimator xini to each of the locations in the final

configuration, xdes. This fuel estimate does not include collision-avoidance (CA) constraints, so it is an underestimate,

but we use it as a proxy because it correlates with the true fuel cost when CA is included. To derive the fuel matrix 𝐹

19

for a given initial and final formation pair, we solve a Trajectory Optimization (TO) problem cast as a linear program.

Each satellite 𝑖, in a decentralized manner, evaluates the fuel cost to move from its current location to each of the final

locations in the formation by solving the Trajectory Optimization (TO) problem:

TO problem to find 𝐹 : 𝑓𝑖 𝑗 = min
𝑢𝑖

𝐾−1∑︁
𝑘=0
∥𝑢𝑖 (𝑘)∥1 subject to (6)

boundary constraints: 𝑥𝑖 (0) = [xini]𝑖 , 𝑥𝑖 (𝐾) = [xdes] 𝑗 , (7)

state space constraints: 𝑥𝑖 (𝑘 + 1) = 𝐴(𝑘)𝑥𝑖 (𝑘) + 𝐵𝑢𝑖 (𝑘), 𝑘 = 0, 1, · · · , 𝐾 − 1, (8)

Actuator saturation: − 𝑢max ≤ 𝑢𝑖 (𝑘) ≤ 𝑢max, (9)

Slew-rate constraints: 𝑢𝑟 ,min ≤ 𝑢𝑖 (𝑘+1) − 𝑢𝑖 (𝑘) ≤ 𝑢𝑟 ,max. (10)

where 𝑓𝑖 𝑗 denotes the optimal fuel cost for satellite 𝑖 to move from its initial location to position 𝑗 = 1, . . . , 𝑁 in the

final formation, and 𝑢𝑖 (𝑘) is the control input bounded in magnitude and rate by [−𝑢max, 𝑢max] and [𝑢𝑟 ,min, 𝑢𝑟 ,max],

respectively.Here, the state-space dynamics is given by (5), discretized with a sampling time of 𝑇𝑐. These calculations

are performed in parallel by all satellites, collectively forming the fuel matrix 𝐹 = [𝑓𝑖 𝑗]𝑁×𝑁 . Step 2 then takes 𝐹 as

input.

2. Trajectory Assignment with Collision Avoidance (TACA) (Step 2)

Having solved the decentralized TO problem in Section III.B.1, we obtain the fuel cost 𝑓𝑖 𝑗 and the corresponding

fuel-optimal trajectories 𝑥𝑖 (𝑘) and actuation sequences 𝑢𝑖 (𝑘) for transfers in which satellite 𝑖 is assigned to terminal

location 𝑗 . For any two satellites 𝑖 and 𝑞 assigned to terminal locations 𝑗 and 𝑝, respectively, we define the minimum

separation along their trajectories as

𝑑𝑖 𝑗𝑞𝑝 := min
𝑘∈{0,...,𝐾 }

𝑟𝑖 (𝑘) − 𝑟𝑞 (𝑘)

2, 𝑞 > 𝑖, 𝑗 ≠ 𝑝,

where 𝑥𝑖 (𝐾) = [xdes] 𝑗 and 𝑥𝑞 (𝐾) = [xdes] 𝑝. By using 𝑑𝑖 𝑗𝑞𝑝 > 𝑅safe,∀𝑖, 𝑗 , TACA problem then finds a collision-free

assignment 𝑖 → 𝑗 and 𝑞 → 𝑝; in other words, assignments with smallest fuel cost that simultaneously avoid collisions

for the duration of the maneuver. The TACA problem can thus be formulated as:

TACA problem:



min
B

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓𝑖 𝑗𝑏𝑖 𝑗

s.t. TA constraints:
𝑁∑︁
𝑖=1

𝑏𝑖 𝑗 =

𝑁∑︁
𝑗=1

𝑏𝑖 𝑗 = 1, 𝑏𝑖 𝑗 = {0, 1},

CA constraints: 𝑏𝑖 𝑗 + 𝑏𝑞𝑝 ≤ 1, if 𝑑𝑖 𝑗𝑞𝑝 < 𝑅safe,

(11)

20

where CA constraints based on separating hyperplanes transform the prohibited assignment with suitable affine

formulation. However, enforcing CA as hard constraints can render the TACA problem infeasible when no assignment

satisfies (11). To always obtain a solution while still prioritizing safety, we soften the CA constraints by introducing slack

variables and penalizing them in the objective. If a collision-free assignment exists, the optimizer drives all slacks to

zero (yielding a safe solution); otherwise, the nonzero slacks identify which satellite pairs must violate 𝑅safe and by how

much. Let us now introduce two four-dimensional matrices H,Cvio where ℎ𝑖 𝑗𝑞𝑝 = H[𝑖, 𝑗 , 𝑞, 𝑝], 𝑐vio
𝑖 𝑗𝑞𝑝

= Cvio [𝑖, 𝑗 , 𝑞, 𝑝]

are entries at index (𝑖, 𝑗 , 𝑞, 𝑝).The modified TACA problem with softened CA constraints can thus be rewritten as

Modified TACA problem:



min
B,H

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓𝑖 𝑗𝑏𝑖 𝑗 + 𝑐vio
𝑖 𝑗𝑞𝑝 ℎ𝑖 𝑗𝑞𝑝 ,∀𝑞, 𝑝 ∈ {1, 2, · · · , 𝑁}, 𝑞 ≠ 𝑖, 𝑝 ≠ 𝑗

s.t. TA constraint in (11),

CA constraints: 𝑏𝑖 𝑗 + 𝑏𝑞𝑝 ≤ 1 + ℎ𝑖 𝑗𝑞𝑝 , if 𝑐vio
𝑖 𝑗𝑞𝑝 ≥ 0,

ℎ𝑖 𝑗𝑞𝑝 ∈ {0, 1},

(12)

where 𝑐vio
𝑖 𝑗𝑞𝑝

= 𝑅safe − 𝑑𝑖 𝑗𝑞𝑝 and ℎ𝑖 𝑗𝑞𝑝 is a binary variable that selects an assignment based on minimal violation from

𝑅safe.

3. Trajectory Optimization (TO) (Step 3)

With the resulting assignment B = [𝑏𝑖 𝑗]𝑁×𝑁 from solving the Modified TACA in (12) (Step 2), we finally solve the

decentralized TO problem with a finer sampling time of 𝑇 𝑓 :

min
𝑢𝑖 ,𝑥𝑖

𝐾−1∑︁
𝑘=0
∥𝑢𝑖 (𝑘)∥1

s.t. 𝑥𝑖 (0) = [xini]𝑖 , 𝑥𝑖 (𝐾) = [xdesB]𝑖 , (8) − (10).

(13)

to compute the optimal satellite trajectories 𝑥∗
𝑖
(𝑘) and actuation 𝑢∗

𝑖
(𝑘), ∀𝑘 .

4. Shrinking-horizon Model-predictive Control (SHMPC) (Step 4)

The effects of unmodeled disturbances and modeling uncertainties need to be explicitly accounted for. In this work,

we implement the TO algorithm in closed loop via an SHMPC formulation [66] to iteratively mitigate the effects of such

uncertainties by evaluating a new control input over a prediction horizon based on the current state information. For a

fixed final formation and time, SHMPC successively computes an optimal actuation command in a fully decentralized

manner which can steer the actual satellite from its current location to its final location at 𝑡 𝑓 . With the update of new

state information, the prediction horizon window shrinks as the start time of the TP algorithm gradually approaches to

𝑡 𝑓 . This method of successive prediction and reoptimizing the trajectory planner with more accurate initial positions

21

thus yields a more robust control law that eventually renders a small trajectory prediction error in the face of modeling

uncertainties and ignored perturbations.

Algorithm 2: Robust control sequence for trajectory planning
Result: Robust control sequence 𝑢𝑅 (𝑘) for 𝑘 ∈ {0, . . . , 𝐾 − 1}
Input: xini, xdes, 𝑢max, 𝑢min, 𝑢𝑟 ,min, 𝑢𝑟 ,max, 𝑡 𝑓 ; sampling time 𝑇 𝑓 ; 𝐾+1 grid points on {0, . . . , 𝐾}; number of
windows 𝛽>0; window length 𝐾1 = 𝐾+1

𝛽
∈ N.

Let x(𝑘) ∈ R6×𝑁 denote the formation state at step 𝑘 . Initialize 𝑐 ← 1, 𝛼← 0, x(0) ← xini, x(𝐾) ← xdes.
do
[x∗, u∗] ← solution of TO over 𝑘 ∈ [𝛼, 𝐾] using the latest available state estimate.
Execute the closed loop over 𝑘 ∈ [𝛼, 𝑐𝐾1 − 1]: apply u∗ through the CL controller and let the system evolve
in real flight between replanning steps, starting from the current state x(𝛼).

xini ← x(𝑐𝐾1 − 1).
For 𝑘 ∈ {𝛼, . . . , 𝑐𝐾1 − 2} set 𝑢𝑅 (𝑘) ← 𝑢∗ (𝑘).
𝛼← 𝑐𝐾1 − 1; 𝑐 ← 𝑐 + 1.

while 𝑐 ≤ 𝛽;
return 𝑢𝑅 (𝑘) for 𝑘 ∈ {0, . . . , 𝐾 − 1}.

Assume the interval [0, 𝑡 𝑓] is discretized into 𝐾 + 1 samples, indexed by 𝑘 ∈ {0, . . . , 𝐾}, with x(0) = xini and

x(𝐾) = xdes. Choose an integer 𝛽 denoting how many times the optimization is re-run during the maneuver; this yields

the prediction interval 𝐾1 =
𝐾 + 1
𝛽

. The more frequently the optimization is run (i.e., the higher 𝛽), the smaller the

trajectory prediction error. Algorithm 2 summarizes the procedure; for details, see [48].

In summary, this section developed an uncertainty-aware trajectory planner that makes the fundamentally large

and nonconvex multi-satellite optimal planning problem tractable at scale. Key innovations that enable this are (i)

recognizing that the linearized 𝐽2 model exhibits sufficiently small prediction errors to permit a convex optimization,

in which the state dynamics appear as affine equality constraints, without sacrificing accuracy, (ii) relaxing the CA

constraints to reduce the communication burden while delegating guaranteed safe flight to the real-time controller, (iii)

decoupling TA from TO, which avoids the complexity of a coupled formulation while sacrificing little fuel optimality,

and (iv) introducing SHMPC to explicitly address modeling errors and disturbances.

IV. Control Layer
This section presents the control layer, which, as shown in Fig. 1, forms the inner layer of the architecture and

operates at faster time scales. It consumes the optimal trajectories generated by the planning layer, together with local

GPS and inter-satellite measurements. Within this layer, the estimator fuses these measurements into robust relative-state

estimates that the real-time controller uses to compute safe, fuel-efficient thrust commands, while also providing the

planning layer with accurate initial conditions for re-running the trajectory planner and, when necessary, triggering

reconfiguration.

22

A. Real-time Controller

Building on the optimal trajectories from the previous section, this section details the real-time actuation on each

satellite. The control logic must simultaneously achieve trajectory tracking, collision avoidance, and fuel-efficient

operation. The control law derived herein relies on a state estimate 𝑥𝑖 , which we assume is provided by a dedicated

estimator. The specifics of the estimation framework are presented subsequently in Section IV.B.

The controller works with three distinct sampling intervals: (i) TP providing {𝑥∗
𝑖
, 𝑢∗
𝑖
} every 𝑇 𝑓 , (ii) the estimator

updating 𝒙̂𝑖 every 𝑇𝑒, and (iii) the controller executing at a rate of 𝑇𝑟 . In this section, the controller operates with a

sampling time of 𝑇𝑟 . At each control step 𝑘 , the planned trajectory {𝑥∗
𝑖
(𝑘), 𝑢∗

𝑖
(𝑘)} is obtained by linearly interpolating

the slower planner outputs, and the state estimate 𝑥𝑖 (𝑘) is taken as the most recent output from the faster estimator.

Finally, at each time step 𝑘 , the satellite is assumed to have access to a set O𝑖 (𝑘) ⊂ R3 containing the minimum distances

to all obstacles within its detection radius 𝑅det, as provided by its sensors.

Given the setup and the assumptions outlined above, the real-time control problem is formally defined next.

Problem Statement 3.

Given: Interpolated trajectory-planner outputs {x∗
𝑖
(𝑘), u∗

𝑖
(𝑘)} with x∗

𝑖
(𝑘) = col

(
r∗
𝑖
(𝑘), v∗

𝑖
(𝑘)

)
; the estimated state

x̂𝑖 (𝑘) = col
(
r̂𝑖 (𝑘), v̂𝑖 (𝑘)

)
evaluated at the controller update times; and the obstacle set O𝑖 (𝑘), for each satellite 𝑖.

Find: A real-time actuation command u𝑖 (𝑘).

Such that:

(i) Tracking: u𝑖 (𝑘) enables satellite 𝑖 to track r∗
𝑖
(𝑘) as closely as possible.

(ii) Collision avoidance: For all 𝑘 , collision avoidance is enforced via ∥r̂𝑖 (𝑘) − r 𝑜∥2 ≥ 𝑅safe, ∀ r 𝑜 ∈ O𝑖 (𝑘).

(iii) Decentralization: The controller operates in a decentralized manner on each satellite, making it suitable for

large swarms.

Next, the high-level architecture of our proposed real-time controller is presented. The controller operates in two

distinct modes: (i) an open-loop mode, which directly applies the TP command 𝑢∗
𝑖
(𝑘), and (ii) an artificial potential field

(APF) mode, which generates a command 𝑢APF
𝑖
(𝑘) to ensure real-time collision avoidance and safety when deviations

from the TP trajectory arise due to disturbances, modeling mismatch, or unexpected obstacles. The operation modes are

selected using a binary switch 𝑐𝑖 (𝑘) ∈ {0, 1} and a latching mechanism. The control logic proceeds according to the

following steps at each time instant 𝑘:

Step 1: Mode Selection: Determine the binary variable 𝑐𝑖 (𝑘) based on tracking error and obstacle proximity.

Specifically, define the tracking error and minimum obstacle distance as 𝑒𝑖 (𝑘) :=

𝑟𝑖 (𝑘) − 𝑟∗𝑖 (𝑘)

, and

23

𝑑obs
𝑖
(𝑘) := min𝑟𝑜∈O𝑖 (𝑘)

𝑟𝑖 (𝑘) − 𝑟𝑜

, then,

𝑐𝑖 (𝑘) =



1, 𝑒𝑖 (𝑘) ≤ 𝑅APF and

𝑑obs
𝑖 (𝑘) ≥ 𝑅safe and(
𝑐𝑖 (𝑘 − 1) = 1 or we received a new trajectory from TP

)
,

0, otherwise.

(14)

Step 2: Command Execution: Compute the actual control input 𝑢𝑖 (𝑘) according to:

𝑢𝑖 (𝑘) =


𝑢∗
𝑖
(𝑘), if 𝑐𝑖 (𝑘) = 1,

𝑢APF
𝑖
(𝑘), if 𝑐𝑖 (𝑘) = 0.

(15)

Thus, the controller tracks the TP command only in open-loop mode. Once the APF-based safety command is invoked,

it persists for the remainder of the planning cycle. When the controller switches from open-loop to APF control, then it

cannot change until the higher-level TP produces a new trajectory. This prevents hazardous re-entry into the optimal

tracker and oscillation between modes. The condition 𝑐𝑖 (𝑘 − 1) = 1 enforces a latch: once 𝑐𝑖 becomes 0 at some step, it

latches to 0 (the controller stays in safety mode) and remains there until a new trajectory explicitly sets 𝑐𝑖 (𝑘) back to 1.

The remaining task is to compute 𝑢APF
𝑖
(𝑘). The APF (attractive and repulsive) is first defined, followed by the

real-time control law that generates 𝑢APF
𝑖
(𝑘). Attractive potential fields Φatt are often modeled using Gaussian, harmonic,

or quadratic functions [31, 67]. Here, differentiability is required so that ∇Φatt
𝑖

is well defined, so a quadratic map

Φatt
𝑖

: R3 → R is adopted:

Φatt
𝑖 (𝑘) = 1

2
(
𝑟𝑖 (𝑘) − 𝑟∗𝑖 (𝑘)

)⊤
𝐾att

(
𝑟𝑖 (𝑘) − 𝑟∗𝑖 (𝑘)

)
. (16)

where 𝐾att ∈ R3×3 is a tuning matrix. Radial unboundedness is not a concern here, as the controller is assumed to keep

a satellite sufficiently close to the goal. For the repulsion field, several differentiable choices exist (e.g., inverse-distance

or exponential forms). It is required that the repulsive field vanishes whenever the satellite is outside the detection radius

to avoid steady-state offsets. Thus, the inverse-distance form presented in [68] is selected. That is,

Φ
rep
𝑖
(𝑟𝑜, 𝑘) =


1
2 𝐾rep

(
1

∥𝑟𝑖 (𝑘) − 𝑟𝑜∥
− 1
𝑅det

)2
, if ∥𝑟𝑖 (𝑘) − 𝑟𝑜∥ < 𝑅det,

0, otherwise,

(17)

where 𝐾rep ∈ R>0 is a tuning coefficient and 𝑟𝑜 ∈ O𝑖 (𝑘). The APF for satellite 𝑖 is then the superposition of the

24

attractive field and all active repulsive fields. This amounts to

Φ𝑖 (𝑘) = Φatt
𝑖 (𝑘) +

∑︁
𝑟𝑜∈O𝑖 (𝑘)

Φ
rep
𝑖
(𝑟𝑜, 𝑘) . (18)

Now, 𝑢APF
𝑖
(𝑘) is determined from Φ𝑖 (𝑘). APF-based controllers commonly drive the system along the negative

gradient of the potential. A classical approach treats the APF as a Lyapunov function and chooses the control to keep its

time derivative negative, which moves the system toward the (moving) target and away from obstacles. However, this

does not, in general, make the velocity equal to the negative gradient, so convergence to the target in the absence of

obstacles may occur along a nonoptimal path. The work in [69], addresses this by enforcing the satellite’s velocity

to align with the negative gradient of the APF. This requires introducing a new Lyapunov function,V𝑖 , based on the

velocity 𝑣𝑖 (𝑘), which reaches its global minimum when 𝑣𝑖 (𝑘) = −∇Φ𝑖 (𝑘) and is defined by

V𝑖 (𝝂𝑖 , 𝑘) = 1
2

∇Φ𝑖 (𝑘) + 𝝂𝑖

2

2. (19)

Differentiating (19) gives ¤V𝑖 =
(
∇Φ𝑖 (𝑘) + 𝑣𝑖

)⊤ (H(
Φ𝑖 (𝑘)

)
𝑣𝑖 + ¤𝑣𝑖

)
. Here ¤𝑣𝑖 denotes the acceleration of the satellite 𝑖

and is selected to ensure that ¤V𝑖 is always negative, as follows:

¤𝑣𝑖 = −H
(
Φ𝑖 (𝑘)

)
𝑣𝑖 − 𝐾𝑑

(
∇Φ𝑖 (𝑘) + 𝑣𝑖

)
,

where selecting 𝐾𝑑 ∈ R3×3 as a positive definite matrix ensures ¤V𝑖 ≤ 0, driving 𝝂𝑖 → −∇Φ𝑖 . Now that we know the

acceleration of satellite 𝑖, we can translate this into the actuation command 𝑢APF
𝑖
(𝑘); that is, find the actuation command

that will produce this acceleration by plugging in the value of ¤𝑣𝑖 , substituting estimated-state values of 𝑟𝑖 and 𝑣̂𝑖 for 𝑟𝑖

and 𝑣𝑖 , then solving the nonlinear dynamics equations for 𝑢𝑖 . Finally, set 𝑢APF
𝑖
(𝑘) = 𝑢𝑖 . More specifically,

𝑢APF
𝑖 (𝑘) = −H

(
Φ𝑖 (𝑘)

)
𝝂̂𝑖 (𝑘) − 𝐾𝑑

(
∇Φ𝑖 (𝑘) + 𝝂̂𝑖 (𝑘)

)
− G

(
𝑟𝑖 (𝑘), 𝝂̂𝑖 (𝑘), 𝑘𝑇𝑟

)
, (20)

where G is given in (2).

To balance tracking accuracy and fuel usage when the APF mode is active, the APF gains 𝐾att, 𝐾rep, 𝐾𝑑 can be tuned

for minimal position-tracking error, control effort, and proximity to obstacles; the reader is referred to [49] for details of

the tuning optimization.

In summary, this section developed a real-time controller that tracks the planned trajectories while maintaining

collision avoidance. Key innovation that enable this is the introduction of a switching control architecture that applies

optimal commands from the TP in an open-loop manner when the formation is safely separated and on-track and

activates the APF mode only near safety limits, so that we retain APF’s fast, low-computation safety response while

25

avoiding its long-term lack of fuel optimality.

B. Robust Estimation

The state estimator must run on each satellite, producing robust local state estimates for both the CL and the TP

from PL, while incorporating information received from GPS and neighboring satellites when available. To establish

the state estimator consider the following assumptions: (i) Each satellite S𝑖 carries a GPS receiver that returns position

measurements 𝑦GPS
𝑖

with a known, satellite-specific noise covariance 𝑅GPS
𝑖

. While the nominal noise is modeled as

zero-mean with covariance 𝑅GPS
𝑖

, the measurements may occasionally contain unmodeled outliers due to atmospheric

effects or transient hardware errors, (ii) Each satellite is also equipped with an inter-satellite sensor that provides

relative-position measurements for neighbors within min{𝑅det, 𝑅comm} with nominal, fixed covariance 𝑅rel
𝑖

. (iii) The

formation is modeled as a connected, time-varying graph where satellites are nodes, and an undirected edge exists

between two satellites if and only if their separation is at most min{𝑅det, 𝑅comm}. (iv) At estimator time-step 𝑘 for

satellite S𝑖 , although every satellite is equipped with GPS, inter-satellite ranging is also used to construct multiple

path-based relative position measurements. . Let T (S𝑖 , 𝑘) denote the set of all simple paths (i.e., those with no repeated

vertices) starting at S𝑖 . For any ℓ ∈ T (S𝑖 , 𝑘), let T ′
ℓ
(S𝑖 , 𝑘) be the ordered list of nodes on ℓ after S𝑖 , and 𝑓ℓ (S𝑖 , 𝑘) its

terminal node. Using the GPS at 𝑓ℓ (S𝑖 , 𝑘) together with the inter-satellite ranges along T ′
ℓ
(S𝑖 , 𝑘), a relative position

measurement of S𝑖 is constructed for path ℓ and made available to S𝑖 , denoted 𝑌𝑁
𝑖,ℓ
(𝑘) ∈ R3. The problem statement of

this section is given next.

Problem Statement 4.

Given: GPS position measurements yGPS
𝑖
(𝑘) ∈ R3; path-based position measurements {𝑦rel

𝑖,ℓ
(𝑘)}ℓ∈T (S𝑖 ,𝑘) ⊂ R3

constructed from inter-satellite ranges along T ′
ℓ
(S𝑖 , 𝑘) and the GPS at 𝑓ℓ (S𝑖 , 𝑘); and the sampled control

û𝑖 (𝑘) ∈ R3 (zero-order hold of u𝑖 (𝑘) with sampling step size 𝑇𝑒).

Find: The state estimate x̂𝑖 (𝑘) and its error covariance 𝑃𝑖 (𝑘) at each estimator sample (every 𝑇𝑒).

Such that:

(i) Nominal accuracy: The estimator provides accurate state estimates under nominal measurement conditions.

(ii) Outlier robustness: In the presence of bounded measurement outliers in GPS and relative measurements,

the estimation error and covariance remain bounded.

(iii) Communication efficiency: The estimator requires minimal inter-satellite communication.

The proposed estimator addresses this problem in two steps:

Step 1: Measurement acquisition: GPS and inter-satellite measurement models are provided such that they

explicitly capture the statistical dependencies and covariance structure of these signals.

Step 2: Robust state estimation: Using the time-varying model in (5), a robust state estimator is proposed to fuse

26

the available measurements while mitigating outliers.

A Kalman filter structure is chosen for the state estimator to address the problem statement. The prediction model

used in the estimator is the linearized 𝐽2 model introduced in (5) with a sampling time of 𝑇𝑒. GPS measurement

noise is modeled as a single zero-mean Gaussian. This is a reasonable assumption because the nominal error sources,

receiver thermal noise, residual clock errors, broadcast ephemeris/clock uncertainties, and imperfect neutral-/ionospheric

corrections are well approximated by Gaussian distributions. Therefore, the GPS measurement of satellite S𝑖 at time-step

𝑘 is

𝑦GPS
𝑖 (𝑘) = 𝑟𝑖 (𝑘) + 𝑛GPS

𝑖 (𝑘), with 𝑛GPS
𝑖 (𝑘) ∼ N

(
0, 𝑅GPS

𝑖

)
. (21)

For relative sensing, let ℓ ∈ T (S𝑖 , 𝑘) be a simple path starting at S𝑖 , with ordered nodes T ′
ℓ
(S𝑖 , 𝑘) after S𝑖 and terminal

node 𝑓ℓ (S𝑖 , 𝑘). Prior formation-flying studies model inter-satellite relative measurement noise as a single Gaussian [70].

Thus, the relative measurement of 𝑟𝑖 (𝑘) induced by path ℓ is

𝑦rel
𝑖,ℓ (𝑘) = 𝑟𝑖 (𝑘) + 𝑛

GPS
𝑓ℓ (S𝑖 ,𝑘) (𝑘) +

∑︁
𝑆 𝑗 ∈T′ℓ (S𝑖 ,𝑘)

𝑛rel
𝑗 (𝑘), 𝑛rel

𝑗 (𝑘) ∼ N
(
0, 𝑅rel

𝑗

)
, (22)

with 𝑛rel
𝑗

and 𝑛GPS
𝑓ℓ

mutually independent noise processes across nodes and paths. The covariance of the relative

measurement is described as

Cov
(
𝑦rel
𝑖,ℓ (𝑘)

)
= 𝑅GPS

𝑓ℓ (S𝑖 ,𝑘) +
∑︁

𝑆 𝑗 ∈T′ℓ (S𝑖 ,𝑘)
𝑅rel
𝑗 . (23)

The set of all relative measurements obtained by satellite S𝑖 through inter-satellite communication at time-step 𝑘 is then

defined as

Yrel
𝑖 (𝑘) =

{
𝑦rel
𝑖,ℓ
(𝑘)

�� 𝑦rel
𝑖,ℓ
(𝑘) = 𝑟𝑖 (𝑘) + 𝑛GPS

𝑓ℓ (S𝑖 ,𝑘) (𝑘) +
∑︁

𝑆 𝑗 ∈T′ℓ (S𝑖 ,𝑘)
𝑛rel
𝑗 (𝑘)

}
, ∀ ℓ ∈ {1, . . . , |T (S𝑖 , 𝑘) |}. (24)

Stacking the elements of Yrel
𝑖
(𝑘), the vector of relative measurements is 𝑦rel

𝑖
(𝑘) = col

(
𝑦rel
𝑖,1 (𝑘), . . . , 𝑦

rel
𝑖, | T (S𝑖 ,𝑘) | (𝑘)

)
. In

then follows that, combining GPS and inter-satellite measurements, the redundant measurement vector for S𝑖 is

𝑦𝑖 (𝑘) = col
(
𝑦GPS
𝑖 (𝑘), 𝑦rel

𝑖 (𝑘)
)
. (25)

Naturally, the relative measurement vector 𝑦𝑖 (𝑘) may contain correlated components since paths in T (S𝑖 , 𝑘) can

overlap and share sensors. Considering two distinct relative measurements 𝑦rel
𝑖,ℓ1
(𝑘) and 𝑦rel

𝑖,ℓ2
(𝑘) ∈ Yrel

𝑖
(𝑘), their

27

cross-covariance is

Cov
(
𝑦rel
𝑖,ℓ1
(𝑘), 𝑦rel

𝑖,ℓ2
(𝑘)

)
=

∑︁
𝑆 𝑗 ∈

(
T′
ℓ1
(S𝑖 ,𝑘)∩T′ℓ2 (S𝑖 ,𝑘)

) 𝑅rel
𝑗

︸ ︷︷ ︸
shared-path relative noise

+


𝑅GPS
𝑓ℓ1 (S𝑖 ,𝑘) , 𝑓ℓ1 (S𝑖 , 𝑘) = 𝑓ℓ2 (S𝑖 , 𝑘),

0, 𝑓ℓ1 (S𝑖 , 𝑘) ≠ 𝑓ℓ2 (S𝑖 , 𝑘).
(26)

From (25) and (26), the covariance of the redundant measurement vector 𝑦𝑖 (𝑘), dropping the (𝑘) for conciseness, is then

Cov(𝑦𝑖 (𝑘)) =



𝑅GPS
𝑖

0 0 · · · 0

0 𝑅rel
𝑖,1 Cov

(
𝑦rel
𝑖,1, 𝑦

rel
𝑖,2
)

· · · Cov
(
𝑦rel
𝑖,1, 𝑦

rel
𝑖, | T (S𝑖 ,𝑘) |

)
0 Cov

(
𝑦rel
𝑖,1, 𝑦

rel
𝑖,2
)

𝑅rel
𝑖,2 · · · Cov

(
𝑦rel
𝑖,2, 𝑦

rel
𝑖, | T (S𝑖 ,𝑘) |

)
...

...
. . .

. . .
...

0 Cov
(
𝑦rel
𝑖,1, 𝑦

rel
𝑖, | T (S𝑖 ,𝑘) |

)
Cov

(
𝑦rel
𝑖,2, 𝑦

rel
𝑖, | T (S𝑖 ,𝑘) |

)
· · · 𝑅rel

𝑖, | T (S𝑖 ,𝑘) |


. (27)

Thus, the output equations for the 𝑖-th satellite is

𝑦𝑖 (𝑘) = 𝐶𝑖 (𝑘) 𝑥𝑖 (𝑘) + 𝑛𝑖 (𝑘), (28)

where 𝑛𝑖 (𝑘) collects all measurement noises available to satellite S𝑖 at time 𝑘 and 𝐶𝑖 (𝑘) is the augmented measurement

matrix and depends on the total number of measurements available to satellite S𝑖 . That is,

𝐶𝑖 (𝑘) = 𝐼 | T (S𝑖 ,𝑘) |+1 ⊗
[
𝐼3 03×3

]
. (29)

In large formations, the number of path-based measurements and the size of the matrix 𝐶𝑖 can grow combinatorially.

Also, since longer paths tend to be noisier, it is beneficial to limit the length of paths used. To avoid collecting

unnecessary measurements and incurring excessive communication overhead, a user-defined outlier tolerance 𝑛∗ is

introduced. Hence, a measurement-acquisition algorithm is generated that gathers enough data to tolerate up to 𝑛∗

outliers while keeping communication overhead minimal. Let S 𝑗 be an 𝑛-th order neighbor of S𝑖 if a path of length 𝑛

connects them. The measurement acquisition procedure in Algorithm 3 increases the neighborhood order until the

user-defined outlier tolerance 𝑛∗ is satisfied, minimizing communication while preserving estimator performance.

With the full measurement set at time 𝑘 assembled, the next step is estimation under the time-varying model in

(5). Two paths are standard. In (i), we adopt a Robust Generalized Maximum-Likelihood Kalman Filter (RGMKF)

following prior work (e.g., [50]), wherein the available measurements are first augmented with the state prediction,

pre-whitened to remove correlations and normalize units, and used to form robust residuals; a GM objective is then

28

Algorithm 3: Measurement acquisition for satellite S𝑖 (Step 1 of the estimation problem in Section IV.B), minimizing
inter-satellite communication.

Input: 𝑛∗, 𝑖, 𝑘
Output: 𝑦𝑖 (𝑘)
Initialize 𝑛 = 1
while ⌊ | T (S𝑖 ,𝑘) |−1

2 ⌋ ≤ 𝑛∗ do
Collect measurements from 𝑛th-order neighbors
Update 𝑦𝑖 (𝑘) with new measurements
𝑛 = 𝑛 + 1

end

minimized via Iteratively Reweighted Least Squares (IRLS) until convergence, yielding a corrected state estimate and

covariance consistent with the dynamics in (5). In (ii), the same pre-whitening step is used solely to identify and discard

outlying measurements, after which a conventional Kalman filter is applied to the cleaned measurement set. The choice

between (i) and (ii) depends on expected outlier prevalence and computational budget: heavier contamination favors

the fully robust RGMKF, while largely reliable data and tighter resources favor outlier rejection followed by standard

filtering. In summary, this section developed an estimator that provides reliable relative-state estimates under noisy

and possibly outlying measurements. Key innovations that enable this are (i) leveraging redundancy in satellites and

onboard sensors to fuse inter-satellite and GPS measurements, with the formation planner indirectly supporting the

estimator by improving network reliability, which improves measurement availability and reliability for each satellite,

and (ii) using an outlier-tolerant Kalman-filter update to handle corrupted GPS measurements.

V. High-Fidelity Simulation and Hardware-in-the-Loop Validation
In this section, we first evaluate the proposed GNC framework in high-fidelity simulations of a CanX-4/5–inspired

mission, and second, perform HIL testing of the TP (from PL) to verify implementability on flight hardware and to

quantify its runtime. Note, we prioritized HIL testing of the TP (over FP) because its on-board runtime determines

whether the swarm can regularly use fuel-optimal planned trajectories, if TP updates are too slow, the system relies

more on the fallback APF commands, hurting mission efficiency. The FP runs only when a reconfiguration is triggered

and produces a terminal geometry, so it can tolerate longer compute times, making its exact on-hardware runtime less

critical to quantify.

A. High-Fidelity Simulation Mission

The mission considered in this section is inspired by the CanX-4/5 mission (University of Toronto Institute for

Aerospace Studies, Space Flight Laboratory, 2014) [71]. The objective of the CanX-4/5 mission was to demonstrate

precision autonomous formation flying with two nanosatellites. Although our GNC framework targets scalable

multi-satellite formations rather than precision two-satellite flight, we benchmark against this two-satellite mission

29

because its documentation is exceptionally comprehensive. Note, however, that differences in application and scale

required several assumptions not specified in the CanX-4/5 documentation. In the following, we present the mission

details in three parts: (i) environment assumptions, (ii) satellite assumptions, and (iii) mission requirements. For each

point, we explicitly identify all deviations from and additions to the published CanX-4/5 setup.

Environment Assumptions: We assume a formation of 10 satellites in low Earth orbit at an altitude of approximately

660 km with orbital elements 𝑖 = 98.4437◦, Ω = 135.1155◦, 𝑒 = 0.0023, and 𝜃 = 0◦ and orbital period of approximately

90 min. Formation flight is simulated using high-fidelity nonlinear dynamics as described in (2). To evaluate

collision-avoidance capabilities of our GNC, we introduce environmental obstacles modeled as spherical keep-out zones,

consistent with prior studies [72].

Compared with CanX-4/5, our study (i) considers a 10-satellite formation (vs. two), (ii) initializes the orbit from a

CelesTrak TLE for CanX-4 at epoch 25 September 2025, (iii) employs high-fidelity nonlinear simulation rather than flight

data, and (iv) explicitly includes obstacle-avoidance scenarios, which were not part of the CanX-4/5 demonstrations.

Satellite Assumptions: The CanX-4/5 nanosatellites use 20× 20× 20 cm Generic Nanosatellite Bus with a total mass

of approximately 15 kg. In our study, we adopt the same volume and mass. We further assume each satellite is equipped

with the following sensors and subsystems:

• Thrusters: In the CanX-4/5 mission, each vehicle employed a liquefied cold-gas propulsion system with four

independently controlled thrusters arranged in a cruciform on a single face, delivering 10 mN of thrust per thruster.

For modeling in our study, we assume ideal bidirectional translational authority along each body axis: three virtual

actuators apply perfectly collinear forces in each direction, abstracting a low-level thrust-allocation mapping from

body-axis force commands to the thrusters. The maximum thrust in each direction is taken as 10 mN, consistent

with the capability of the actual thrusters. We further assume that the directional thrusts produce no net torque;

although not physically realizable due to off-axis components and alignment errors, the resulting moments are

assumed to be rejected by an attitude controller, which is not treated in this work.

• GPS: Each CanX-4/5 spacecraft carried a NovAtel OEMV-1G receiver; similarly, we assume each satellite is

equipped with GPS. While such receivers output position in an Earth-fixed frame that would be transformed to

LVLH, we adopt the simplifying assumption that GPS provides position directly in LVLH. To evaluate estimator

performance in simulation, measurement noise must be modeled explicitly (whereas in flight it is inherently

present). In our estimator, we assume that measurement noise is drawn from a nominal Gaussian distribution

(see (21)), which forms the basis for state estimation. To assess robustness against outliers, we extend the

measurement-noise model, consistent with prior work showing GPS position errors are well modeled by Gaussian

30

mixtures [73–75], as

𝑏 ∼ Bernoulli(𝑝out), 𝑛GPS
𝑖 (𝑘) ∼ (1 − 𝑏) N (0, 𝜎2

nom𝐼3) + 𝑏N(0, 𝜎2
out𝐼3),

where 𝑝out ∈ [0, 1] is the probability of an outlier. The N(0, 𝜎2
nom𝐼3) term represents the nominal noise

with smaller variance, 𝜎nom < 𝜎out, while the N(0, 𝜎2
out𝐼3) term represents the outlying noise associated with

larger, infrequent deviations. Based on the OEMV-1G hardware datasheet [76], we set 𝜎nom ≈ 1.0 m per axis,

𝜎out = 5.0 m, and 𝑝out = 0.10 (in line with empirical GMM fits [73]).

• Obstacle-identification sensor: CanX-4/5 did not carry a proximity sensor. We assume a proximity sensor with

a detection radius of 𝑅det = 100 m to demonstrate autonomous obstacle avoidance, consistent with flight hardware

on Orbital Express, TriDAR, and RemoveDEBRIS, which achieved comparable or greater ranges [77–79].

• Inter-satellite distance measurement: CanX-4/5 obtained inter-satellite distance measurements via carrier-phase

differential GNSS baselines. This couples GPS errors into the inter-satellite distance measurement; however, we

make the simplifying assumption that this coupling is absent. Specifically, we assume each satellite to carry an

independent inter-satellite sensor providing 3D line-of-sight measurements to its neighbors, uncorrelated with

GPS errors. In other missions, independent inter-satellite links (e.g., RF, laser, optical, or vision-based) explicitly

decouple ranging from GPS (e.g., FFRF and TanDEM-X [70, 80]), so this is not an overly simplifying assumption.

The measurement noise is modeled as in (22); we set the standard deviation 𝑅rel to 0.04 m 𝐼3, consistent with

PRISMA’s FFRF modeling [80].

• Inter-satellite communications: CanX-4/5 carried an ISL radio with two S-band patch antennas for bidirectional

messaging. Although qualified for separations of several kilometers [37], in our simulations we assume a

conservative effective range of ∼400 m and a binary link model (connected within range, disconnected otherwise)

as a simplifying abstraction.

Mission Requirements: We design the simulation to be comparable in scale and objectives to the CanX-4/5

demonstration of a 500 m ATO reconfiguration. Unlike CanX-4/5, which involved two satellites, our study considers

a formation of 𝑁 = 10. Because formation geometry and initial conditions for multi-satellite cases are not available

from the CanX-4/5 reports, we define these explicitly while preserving the same reconfiguration scale, namely a

1000 m→ 500 m ATO transition. For the reference geometry F0, define 𝛼𝑖 = 2𝜋 (𝑖−1)
𝑁

. The 𝑖-th mission prescribed

position is [F0]𝑖 = col
(500

2 sin𝛼𝑖 , 500 cos𝛼𝑖 , 0
)
, corresponding to a 500 m ATO. The initial positions at 𝑡 = 0 use the

same parameterization: 𝑟𝑖 (0) = col
(1000

2 sin𝛼𝑖 , 1000 cos𝛼𝑖 , 0
)
, representing a 1000 m ATO. Thus, the simulation

mirrors the CanX-4/5 maneuver in magnitude; to also match the timescale , we set 𝑡 𝑓 to almost half an orbital period.

Finally, we impose the following performance requirements:

31

• Fuel usage: total reconfiguration cost per satellite satisfies Δ𝑣 ≤ 20 m/s over the whole maneuver .

• Estimation accuracy: RMS relative-navigation error satisfies ≤ 1 m.

• Tracking accuracy: steady-state RMS relative error satisfies ≤ 10 m.

• Obstacle avoidance: trajectories remain collision-free throughout the maneuver.

Results: Here we present the results of the formation-flying mission simulation using our proposed GNC framework,

from formation design by the formation planner through trajectory planning, execution, and real-time control and

estimation under unexpected obstacles and measurement noise. The performance is evaluated against the key mission

requirements described above.

Starting with the formation planner, we pass the formation F0 with 8 satellites (𝑀 = 8). Using a Monte Carlo

estimator with 104 trials and edge operation probability 𝑝 = 0.9, the initial formation’s reliability is ≈ 59.1% (left panel

of Fig. 5). In the remaining subfigures, satellites 9 and 10 are added and optimally relocated using the algorithms of

Section III.A, increasing the all-terminal reliability to 94.7% and then 98.6%. The desired formation Fdes is updated

accordingly; velocities are assigned as in Section III.A.2, and the resulting terminal state xdes is provided to the trajectory

planner.

To assess whether jointly optimizing the placements of satellites 9 and 10 could yield a better terminal reliability than

the proposed iterative addition, we also performed an exhaustive randomized search over the whole region. Specifically,

in MATLAB we repeatedly sampled candidate pairs of relative positions for satellites 9 and 10 uniformly at random

within the admissible space, formed the corresponding terminal graph, and evaluated all-terminal reliability via the same

Monte Carlo simulations. Across a large number of samples, this batched random search did not find any placement pair

that exceeded the reliability achieved by the iterative planner. Moreover, reaching a solution of comparable quality

required substantially more samples and computation (on the order of ∼ 10× the runtime of the iterative approach).

While more sophisticated global-search heuristics could be explored in future work, these results suggest that the

iterative planner attains near-best reliability in this scenario at a fraction of the computational cost.

The desired initial and terminal states from the FP are then provided to the trajectory planner, configured with

𝑇𝑐 = 250 s and 𝑇 𝑓 = 20 s. The resulting fuel-optimal trajectories are shown in Fig. 6. All satellite trajectories reconfigure

the maneuver from the initial to the desired formation while satisfying the actuator constraints.

Now, given the optimal trajectories from the TP, the real-time mission is executed as follows: we employ the real-time

estimator in Section IV.B and the controller in Section IV.A, both running at 1 Hz. To demonstrate the framework’s

collision-avoidance capability, we place a spherical obstacle directly on the preplanned trajectory of one satellite as

shown in Fig. 7. The figure also shows the actual paths taken by all satellites compared with the planned ones. During

the simulation, the SHMPC is triggered three times to replan the optimal trajectory and maintain collision-free motion.

All satellites apply the optimal actuation computed by the trajectory planner and exhibit good tracking. For the satellite

32

Greedy redundant placement: comm graph and all-terminal reliability

xLV LH [km]
-0.2 0 0.2

y
L
V
L
H

[k
m
]

-0.5

0

0.5

Before adding redundant sat (8 sats)
Rel ≈ 0.591

s1

s2

s3

s4

s5

s6

s7

s8

xLV LH [km]
-0.2 0 0.2

y
L
V
L
H

[k
m
]

-0.5

0

0.5

After adding s9 (9 sats)
Rel ≈ 0.947

s1

s2

s3

s4

s5

s6

s7

s8

s9

xLV LH [km]
-0.2 0 0.2

y
L
V
L
H

[k
m
]

-0.5

0

0.5

After adding s10 (10 sats)
Rel ≈ 0.986

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Fig. 5 Formation reconfiguration when adding two redundant nodes to a formation with eight prescribed
positions.

xLVLH [km]
-0.5 0 0.5

y
L
V
L
H
[k
m
]

-1

-0.5

0

0.5

1

Trajectory
Start
End

0 500 1000 1500 2000 2500 3000

x
L
V
L
H
[k
m
]

-0.5

0

0.5
X Position vs Time

0 500 1000 1500 2000 2500 3000

y
L
V
L
H
[k
m
]

-1

-0.5

0

0.5

1
Y Position vs Time

Time t [s]

0 500 1000 1500 2000 2500 3000

C
u
m
u
la
ti
ve

∆
v
(m

/
s)

0

0.2

0.4

0.6
Cumulative Fuel (∆v)

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

Fig. 6 TP planned trajectory. Left: projection of trajectories on the orbit plane; 𝑧LVLH omitted due to small
variation. Right: 𝑥(𝑡) and 𝑦(𝑡) (top, middle) and cumulative Δ𝑣 (bottom).

33

xLV LH [km]
-0.5 0 0.5

y
L
V

L
H

[k
m

]

-1.5

-1

-0.5

0

0.5

1
Planned (pink) & Actual (green)

0 500 1000 1500 2000 2500 3000

x
L
V

L
H

[k
m

]

-0.5

0

0.5
X(t)

0 500 1000 1500 2000 2500 3000

y
L
V

L
H

[k
m

]

-1

0

1
Y(t)

Time [s]
0 500 1000 1500 2000 2500 3000C

u
m

u
la

ti
v
e
"

v
[m

/
s]

0.0

0.2

2.0

10.0

20.0
Planned Obstacle S1 S2 S3 S4

S5 S6 S7 S8 S9 S10

Fig. 7 Planned (pink, wide) vs. actual closed-loop (green) LVLH projected trajectories. A single LVLH-fixed
keep-out zone (gray) intersects the references of one of satellites; upon detection, the APF safety mode detours
them around the obstacle before rejoining the plan. Other vehicles track their references closely. The maneuver
is collision-free and maintains the 50 m separation margin.

whose path intersects the obstacle, an event not accounted for by the TP, the APF controller is triggered, guiding the

satellite around the obstacle while maintaining a safe distance. This validates the system’s ability to react to unforeseen

obstacles without centralized replanning. Finally, a performance summary is presented in Fig. 8, evaluated against the

core mission requirements:

• Tracking Accuracy: The control tracking RMSE for the satellite encountering the unforeseen obstacle is

significantly higher than for the others, as shown in the bar chart, due to the additional maneuvering required to

avoid the obstacle. This higher RMSE is accompanied by greater fuel usage, which is expected given the deviation

from the optimal path. For all other satellites, the tracking RMSE remains below approximately 10 m.

• Fuel Usage (Δ𝑣): Similar to tracking accuracy, the actual Δ𝑣 for the satellite encountering the unforeseen obstacle

increased significantly due to the avoidance maneuver. For the other satellites, the actual Δ𝑣 closely matched the

fuel-efficient planned values.

• Collision Avoidance: The minimum inter-satellite distance for all satellites remained above the 50 m safety

threshold throughout the simulation, confirming that the system is collision-free.

• Estimation Accuracy: The estimation RMSE for all satellites remains approximately below 0.7 m throughout the

34

Satellite
2 4 6 8 10

T
ra
ck
in
g
R
M
S
E

[m
]

0

2

4

6

8

10

12

14

16

18
Tracking

2 4 6 8 10

Satellite

10−1

100

101

∆
v
[m

s
−
1
]

Fuel (Planned vs Actual, total ∆v)

Planned

Actual

Satellite
2 4 6 8 10

M
in

in
te
r-
sa
t
d
is
ta
n
ce

[m
]

0

50

100

150

200

250
Safety Margin

Satellite
2 4 6 8 10

E
st
im

at
io
n
R
M
S
E

[m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Estimation

Satellite
2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

M
ea
n
n
ei
g
h
b
o
rs

(c
o
u
n
t)

Mean Neighbors

Fig. 8 Per-satellite closed-loop metrics. Panels (left→right): tracking RMSE; total Δ𝑣 (actual vs. planned);
minimum pairwise distance; estimation RMSE; mean neighbor count. S8 show larger RMSE and higher Δ𝑣 from
obstacle-avoidance detours; others track closely and match the plan. All vehicles maintain ≥ 50 m separation.
Estimation error accuracy trends with neighbor count (right).

simulation. The estimator’s performance appears correlated with the mean number of neighboring satellites, as

shown in the rightmost plot of Fig. 8, since a larger number of neighbors provides additional measurements to the

estimator.

Finally, we circle back to our GNC design requirements: achieving both reliability and efficiency. Recall that we

adopted a deliberate decoupling, reliability via the FP and efficiency via the TP, which sacrifices global optimality for

tractability. To assess the effect of incorporating the FP itself, Fig. 9 plots total fuel consumption and all-terminal

reliability over time for two cases: (i) the FP updates xdes before TP and real-time execution, and (ii) the reference

formation is passed directly to the TP, bypassing the FP. With FP, the all-terminal reliability constraint is satisfied at the

end of the maneuver but not enforced during the transient; without FP, reliability remains lower, and fuel consumption

is not reduced. Even though no general conclusion can be drawn, these results suggest that incorporating the FP

consistently improves reliability without compromising fuel efficiency, at least for this mission. Finally, while a joint

reliability–efficiency optimization could yield a formation with comparable reliability at lower fuel than case (i), our

decoupled framework meets the specified requirements.

B. Hardware-in-the-Loop (HIL) Validation of TP

This section reports HIL test results for the TP from the PL. The TP, as presented in Sec. III.B, comprises: (i)

fuel-matrix calculation (Step 1), where each satellite solves a convex program to populate 𝐹 = [𝑓𝑖 𝑗]; (ii) TACA (Step 2),

which solves a centralized mixed-integer program; and (iii) TO (Step 3), where each satellite, in a decentralized manner,

solves for the optimal trajectory given its trajectory assignment. Note that Step 1 and Step 3 essentially solve the

35

Time [s]
0 500 1000 1500 2000 2500 3000

A
ll
-t
er
m
in
al

re
li
ab

il
it
y

0

0.2

0.4

0.6

0.8

1
All-terminal Reliability (MC = 10000)

No FP
with FP

(a) All-terminal reliability as a function of time for the
NO-FP and FP runs.

Time [s]
0 500 1000 1500 2000 2500 3000

T
ot
a
l
∆
v
[m

/
s]

0

2

4

6

8

10

12

14

16

18
Total ∆v of Formation

No FP
with FP

(b) Cumulative total Δ𝑣 of the entire formation over the
mission time.

Fig. 9 Comparison of formation performance with and without the Formation Planner (FP): (a) all-terminal
reliability over time and (b) cumulative fuel usage (total Δ𝑣) for the full formation.

same problem (i.e., the TO problem in (6)) but differ in two ways: (i) sampling rate: Step 1 discretizes the dynamics

with a coarse sampling time 𝑇𝑐, while Step 3 uses a finer sampling time 𝑇 𝑓 ; and (ii) scope: Step 1 is solved for all

possible input–output pairs, whereas Step 3 is solved by each satellite only for its assigned trajectory. Accordingly,

in our first HIL testing we run the same TO problem at two sampling rates (coarse and fine) for a single initial–final

position pair, since our focus is computation time; we set the coarse horizon to 𝑇𝑐 = 250 and the fine horizon to

𝑇 𝑓 = 20. We also evaluate the TACA problem from Step 2 in our second HIL test. Because TACA is centralized and

its complexity scales with formation size, we test different values of 𝑁 to observe how the computation time grows

with the number of satellites, specifically considering 𝑁 ∈ {2, 10, 50}. In both HIL tests, the target orbit is assumed

to be near-circular with semi-major axis 𝑎 = 6800 km, eccentricity of 0.001, inclination 𝑖 = 98.6◦, right ascension

of the ascending node Ω = 47◦, and argument of latitude, 𝜃 of 0◦. The initial and desired formations for satellite 𝑖

are [xini]𝑖 = col
(
0, (𝑖−1) · 100 m, 0, 0, 0, 0

)
, and [xdes]𝑖 = col

(
2000 + (𝑖−1) · 100 m, 0, 0, 0, 0, 0

)
.. For the TO

problem, we set 𝑢max = 1 and 𝑅safe = 50 m, with a horizon of one orbital period.

The goals of the HIL testing are to (i) verify that the TO, at both sampling rates, and the TACA, for all 𝑁 , execute

successfully on flight-class hardware, and (ii) quantify their computational demand for onboard feasibility. In our HIL

setup, the TO and TACA were executed on a flight-class computer representative of a satellite, in collaboration with

Benchmark Space Systems. The details of this setup are presented below.

Flight hardware and OS: Tests were performed on an Avnet MicroZed system-on-module featuring a Xilinx Zynq-

7020 SoC (dual-core ARM Cortex-A9, 667 MHz) with 1 GB DDR3 RAM, running a lightweight Linux distribution

built with PetaLinux. All algorithms were executed on the ARM processing system. The available interfaces during

testing included RJ45 Ethernet, Ethernet-over-USB, and Wi-Fi.

36

Code base and solvers: The original MATLAB research code was ported to C++ for embedded deployment on

flight hardware. All three steps of the trajectory planner require solving an optimization problem; therefore, we had

to pick a solver capable of solving an LP for the TO problem in (6) and a MILP for the TACA problem in (12). Our

desktop experiments used Gurobi for both optimization problems; however, Gurobi is not supported on the 32-bit ARM

target. Accordingly, we pivoted to using Operator Splitting Quadratic Program (OSQP) to solve the TO problems and

COIN-OR CBC to solve the TACA problem (see [81] and [82] for an introduction to OSQP and COIN-OR CBC).

Results: We solved TO for a single satellite pair (𝑖 = 1) on the flight hardware using OSQP with two discretizations,

𝑇 𝑓 = 20 and 𝑇𝑐 = 250. We report solver time, wall time, iteration count on the flight CPU, and problem size in Table 2.

As expected, increasing the sampling time reduces problem size and solve time. In fact, the solver time drops by almost

×10 when increasing samoling time from 20 to 250s. The solve time refers to the time the solver spends computing a

solution. The total wall time includes both the solve time and additional setup overhead, such as loading model data (e.g.,

𝐴(𝑘) for 𝑘 = 1, . . . , 𝐾 and 𝐵 from (5)), initializing optimization parameters and initial conditions, and assembling the

problem into the solver’s required format (e.g., combining all equality and inequality constraints into a single matrix).

On flight hardware, wall time exceeds solver time somewhat considerably due to uploading the time-varying dynamics

matrices 𝐴(𝑘) and 𝐵 (an effect that grows as the sampling time decreases); this transfer is absent in an actual in-flight

run, where the data are already onboard.

After solving the TO with 𝑇𝑐 = 250 s for all input–output pairs between xini and xdes for all 𝑁 ∈ {2, 10, 50}, we

populate the fuel matrix and solve the TACA problem. For each 𝑁 , we report the solver time and wall time in Table 3.

Note that here the wall time includes only uploading the fuel matrix and performing the matrix operations needed to

match the solver’s input format; we observe much smaller wall times, especially for smaller 𝑁 , because the fuel matrix

contains only a few values, in contrast to the large time-varying matrices handled by TO.

For the TACA, we need to consider the whole formation as the size of the formation directly affects the size of the

porblem we use the same initial and final conditions as before and run. TACA solved for 𝑁 ∈ {2, 10, 50}. For each

configuration, we record solver time and end-to-end wall-time on the flight CPU. As expected both solver and wall times

increase with 𝑁 as the size of the problem increases. For 𝑁 = 50, the solver takes about 12 seconds, which is is well

below one minute, which we were aiming for. Note that TACA is not required to run in real time; it is invoked only at

TP events. Moreover, because it is centralized, it need not run on flight hardware and can instead be executed on the

ground or on a leader with higher computational power.

If we only consider the solver time, the TP cycle is dominated by the TACA solve rather than the TO. Combining the

fuel–matrix calculation, TACA, and TO yields total solver times of about 0.55 s for 𝑁 = 2, 0.58 s for 𝑁 = 10, and 12.4 s

for 𝑁 = 50. These approximations are based solely on solver time; the corresponding wall times on the flight hardware

will be larger, but not as large as the values reported in Table 2, because those measurements also include the overhead

37

of uploading large data matrices to the microprocessor. Thus, if we are aiming for roughly one minute of computation

per TP update, the computation-time trends in Table 3 and Table 2 suggest that the proposed control architecture is

practically suitable for formations up to roughly 𝑁 ≈ 50 when solving TACA on the ground or with a dedicated leader.

Table 2 HIL results for Trajectory Optimization on flight hardware (OSQP).

Sampling time (s) Problem Size Flight Hardware (OSQP)

Decision Vars (𝑛) # Constraints (𝑚) Solver (s) Wall (s)

250 834 1887 0.0193 2.65
20 10230 23187 0.522 58.1

Table 3 HIL results for TACA (𝑇𝑐 = 250 s)

𝑁 Solver Time (s) Wall Time (s)

2 0.007435 0.0077
10 0.03787 0.0392
50 11.8483 12.1

VI. Conclusions
This work demonstrated a novel, integrated GNC framework that enables scalable, safe, and autonomous satellite

swarm operations. The framework integrates (i) a formation planner that exploits swarm redundancy to improve

communication-network reliability, (ii) a fuel-optimal, collision-aware trajectory planner that computes feasible

reconfiguration maneuvers over a prescribed time horizon, and (iii) a control layer that couples real-time safety-critical

control with robust state estimation to maintain performance under disturbances and sensor anomalies. High-fidelity

simulations validated end-to-end performance, demonstrating formation reconfigurations while maintaining collision

avoidance in the tested scenarios, including cases with previously unknown obstacles. Hardware-in-the-loop testing

further showed that the trajectory planning algorithms are computationally feasible for execution on resource-constrained

flight hardware.

While this work establishes a complete end-to-end GNC framework for autonomous satellite-swarm operations,

several directions remain open for further research. First, the iterative formation planner warrants deeper theoretical

analysis. Future work includes characterizing when the greedy placement converges to the globally optimal all-terminal

reliability solution, deriving bounds on how suboptimal the solution can be in worst-case scenarios, and identifying

conditions under which the greedy sequence is guaranteed to match the optimal placement. Second, the formation-

planning problem can be broadened beyond communication-network reliability to include additional mission objectives,

such as sensing coverage, geometric baselines for imaging, and load balancing, leading to multi-objective or jointly

optimal terminal-formation designs. Third, reliability evaluation itself can be improved: in this work we estimate

38

all-terminal reliability via Monte Carlo sampling, while a variety of methods for estimating and bounding network

reliability have been proposed in the literature, including learning-based approaches that may offer improved run-time

for formation planning in future work [83]. Fourth, for the TP, our proposed future work includes introducing curvature

constraints in the decoupled TO problem to further improve fuel optimality, and studying the shrinking-horizon optimal

control approach. Finally, larger-scale hardware-in-the-loop tests and eventual on-orbit demonstrations would further

validate the computational scalability and practical feasibility of the proposed framework for next-generation swarm

missions.

References
[1] Le Moigne, J., Little, M. M., and Cole, M. C., “New observing strategy (NOS) for future earth science missions,” IGARSS

2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019, pp. 5285–5288.

[2] Llorente, J. S., Agenjo, A., Carrascosa, C., de Negueruela, C., Mestreau-Garreau, A., Cropp, A., and Santovincenzo, A.,

“PROBA-3: Precise formation flying demonstration mission,” Acta Astronautica, Vol. 82, No. 1, 2013, pp. 38–46.

[3] DeForest, C., Killough, R., Gibson, S., Henry, A., Case, T., Beasley, M., Laurent, G., Colaninno, R., and Waltham, N.,

“Polarimeter to unify the corona and heliosphere (punch): Science, status, and path to flight,” 2022 IEEE Aerospace Conference

(AERO), IEEE, 2022, pp. 1–11.

[4] Zink, M., Krieger, G., Fiedler, H., and Moreira, A., “The TanDEM-X mission: Overview and status,” 2007 IEEE International

Geoscience and Remote Sensing Symposium, IEEE, 2007, pp. 3944–3947.

[5] Ruf, C. S., Atlas, R., Chang, P. S., Clarizia, M. P., Garrison, J. L., Gleason, S., Katzberg, S. J., Jelenak, Z., Johnson, J. T.,

Majumdar, S. J., et al., “New ocean winds satellite mission to probe hurricanes and tropical convection,” Bulletin of the

American Meteorological Society, Vol. 97, No. 3, 2016, pp. 385–395.

[6] Zhihui, X., Jinguo, L., Chenchen, W., and Yuchuang, T., “Review of in-space assembly technologies,” Chinese Journal of

Aeronautics, Vol. 34, No. 11, 2021, pp. 21–47.

[7] Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C.,

Belward, A. S., Cohen, W. B., et al., “Current status of Landsat program, science, and applications,” Remote sensing of

environment, Vol. 225, 2019, pp. 127–147.

[8] Noh, M.-J., and Howat, I. M., “Analysis of planetscope dove digital surface model accuracy using geometrically simulated

images,” Remote Sensing, Vol. 15, No. 14, 2023, p. 3496.

[9] Di Mauro, G., Lawn, M., and Bevilacqua, R., “Survey on guidance navigation and control requirements for spacecraft

formation-flying missions,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 3, 2018, pp. 581–602.

[10] Jain, R., Speretta, S., Dirkx, D., and Gill, E., “Inter-satellite tracking methods and applications: A comprehensive survey,”

Advances in Space Research, Vol. 74, No. 8, 2024, pp. 3877–3901.

39

[11] Paek, S. W., Kim, S., and de Weck, O., “Optimization of reconfigurable satellite constellations using simulated annealing and

genetic algorithm,” Sensors, Vol. 19, No. 4, 2019, p. 765.

[12] Leyva-Mayorga, I., Röper, M., Matthiesen, B., Dekorsy, A., Popovski, P., and Soret, B., “Inter-plane inter-satellite connectivity

in LEO constellations: Beam switching vs. beam steering,” 2021 IEEE Global Communications Conference (GLOBECOM),

IEEE, 2021, pp. 1–6.

[13] Pinciroli, C., Birattari, M., Tuci, E., Dorigo, M., del Rey Zapatero, M., Vinko, T., and Izzo, D., “Self-organizing and scalable

shape formation for a swarm of pico satellites,” 2008 NASA/ESA Conference on Adaptive Hardware and Systems, IEEE, 2008,

pp. 57–61.

[14] Xu, Y., Zhang, Y., Wang, Z., He, Y., and Fan, L., “Self-organizing control of mega constellations for continuous Earth

observation,” Remote Sensing, Vol. 14, No. 22, 2022, p. 5896.

[15] Folta, D., Newman, L. K., and Quinn, D., “Design and implementation of satellite formations and constellations,” AAS/GSFC

13th International Symposium on Space Flight Dynamics, Vol. 1, 1998.

[16] Boshuizen, C., Mason, J., Klupar, P., and Spanhake, S., “Results from the planet labs flock constellation,” 2014.

[17] Kbidy, G., Adamski, G., and May, N., “Design concepts and challenges for the iridium NEXT command and control system,”

2018 SpaceOps Conference, 2018, p. 2708.

[18] Giralo, V., Chernick, M., and D’Amico, S., “Guidance, navigation, and control for the DWARF formation-flying mission,”

AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, CA, 2020, p. 0.

[19] Koenig, A. W., D’Amico, S., and Lightsey, E. G., “Formation flying orbit and control concept for virtual super optics

reconfigurable swarm mission,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 9, 2023, pp. 1657–1670.

[20] Bodin, P., Larsson, R., Nilsson, F., Chasset, C., Noteborn, R., and Nylund, M., “PRISMA: An in-orbit test bed for guidance,

navigation, and control experiments,” Journal of Spacecraft and Rockets, Vol. 46, No. 3, 2009, pp. 615–623.

[21] Oh, K.-K., Park, M.-C., and Ahn, H.-S., “A survey of multi-agent formation control,” Automatica, Vol. 53, 2015, pp. 424–440.

[22] Ren, W., and Beard, R. W., Distributed consensus in multi-vehicle cooperative control: theory and applications, Springer, 2008.

[23] Mesbahi, M., and Egerstedt, M., Graph Theoretic Methods in Multiagent Networks, Princeton Series in Applied Mathematics,

Princeton University Press, Princeton, NJ, 2010.

[24] Zavlanos, M. M., Egerstedt, M. B., and Pappas, G. J., “Graph-theoretic connectivity control of mobile robot networks,”

Proceedings of the IEEE, Vol. 99, No. 9, 2011, pp. 1525–1540.

[25] Colbourn, C. J., The combinatorics of network reliability, Oxford University Press, Inc., 1987.

[26] Morgan, D., Chung, S.-J., and Hadaegh, F. Y., “Model predictive control of swarms of spacecraft using sequential convex

programming,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014, pp. 1725–1740.

40

[27] Eren, U., Prach, A., Koçer, B. B., Raković, S. V., Kayacan, E., and Açıkmeşe, B., “Model predictive control in aerospace

systems: Current state and opportunities,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 7, 2017, pp. 1541–1566.

[28] Das, P. K., and Jena, P. K., “Multi-robot path planning using improved particle swarm optimization algorithm through novel

evolutionary operators,” Applied Soft Computing, Vol. 92, 2020, p. 106312.

[29] Olfati-Saber, R., Fax, J. A., and Murray, R. M., “Consensus and cooperation in networked multi-agent systems,” Proceedings of

the IEEE, Vol. 95, No. 1, 2007, pp. 215–233.

[30] Reynolds, C. W., “Flocks, herds and schools: A distributed behavioral model,” Proceedings of the 14th annual conference on

Computer graphics and interactive techniques, 1987, pp. 25–34.

[31] Khatib, O., “Real-time obstacle avoidance for manipulators and mobile robots,” The international journal of robotics research,

Vol. 5, No. 1, 1986, pp. 90–98.

[32] Fax, J. A., and Murray, R. M., “Information flow and cooperative control of vehicle formations,” IEEE transactions on automatic

control, Vol. 49, No. 9, 2004, pp. 1465–1476.

[33] Yu, J., and LaValle, S. M., “Optimal multirobot path planning on graphs: Complete algorithms and effective heuristics,” IEEE

Transactions on Robotics, Vol. 32, No. 5, 2016, pp. 1163–1177.

[34] Koren, Y., and Borenstein, J., “Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,”

Proceedings of the 1991 IEEE International Conference on Robotics and Automation (ICRA), Vol. 2, IEEE, IEEE, 1991, pp.

1398–1404.

[35] D’Amico, S., Gill, E., Garcia, M. F., and Montenbruck, O., “GPS-based real-time navigation for the PRISMA formation flying

mission,” 3rd ESA workshop on satellite navigation user equipment technologies, NAVITEC, 2006.

[36] Zhang, Z., Deng, L., Feng, J., Chang, L., Li, D., and Qin, Y., “A survey of precision formation relative state measurement

technology for distributed spacecraft,” Aerospace, Vol. 9, No. 7, 2022, p. 362.

[37] Kahr, E., Roth, N., Montenbruck, O., Risi, B., and Zee, R. E., “GPS relative navigation for the CanX-4 and CanX-5

formation-flying nanosatellites,” Journal of Spacecraft and Rockets, Vol. 55, No. 6, 2018, pp. 1545–1558.

[38] Montenbruck, O., Wermuth, M., and Kahle, R., “GPS based relative navigation for the TanDEM-X mission-first flight results,”

Navigation, Vol. 58, No. 4, 2011, pp. 293–304.

[39] Kaplan, E. D., and Hegarty, C., Understanding GPS/GNSS: principles and applications, Artech house, 2017.

[40] Priyadarshi, S., “A review of ionospheric scintillation models,” Surveys in geophysics, Vol. 36, No. 2, 2015, pp. 295–324.

[41] McGraw, G. A., Groves, P. D., and Ashman, B. W., “Robust Positioning in the Presence of Multipath and NLOS GNSS Signals,”

Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil

Applications, Vol. 1, Wiley, 2020, pp. 551–589.

41

[42] Psiaki, M. L., and Humphreys, T. E., “GNSS spoofing and detection,” Proceedings of the IEEE, Vol. 104, No. 6, 2016, pp.

1258–1270.

[43] Gandhi, M. A., and Mili, L., “Robust Kalman filter based on a generalized maximum-likelihood-type estimator,” IEEE

Transactions on Signal Processing, Vol. 58, No. 5, 2009, pp. 2509–2520.

[44] Low, S. Y., Bell, T., and D’Amico, S., “Flight-Ready Precise and Robust Carrier-Phase GNSS Navigation Software for

Distributed Space Systems,” arXiv preprint arXiv:2508.18246, 2025.

[45] Lee, T., Leok, M., and McClamroch, N. H., “A combinatorial optimal control problem for spacecraft formation reconfiguration,”

2007 46th IEEE Conference on Decision and Control, IEEE, 2007, pp. 5370–5375.

[46] Chen, J., Wu, B., Sun, Z., and Wang, D., “Distributed safe trajectory optimization for large-scale spacecraft formation

reconfiguration,” Acta Astronautica, Vol. 214, 2024, pp. 125–136.

[47] Buchanan, C., Bagrow, J., Rombach, P., and Ossareh, H., “Node Placement to Maximize Reliability of a Communication

Network with Application to Satellite Swarms,” 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC),

2023, pp. 3466–3473. https://doi.org/10.1109/SMC53992.2023.10394556.

[48] Basu, H., Pedari, Y., Almassalkhi, M., and Ossareh, H. R., “Computationally Efficient Collision-Free Trajectory Planning of

Satellite Swarms Under Unmodeled Orbital Perturbations,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 8, 2023,

pp. 1548–1563. https://doi.org/10.2514/1.G007206.

[49] Pedari, Y., Basu, H., and Ossareh, H. R., “A Novel Framework for Trajectory Planning and Safe Navigation of Satellite Swarms,”

IFAC-PapersOnLine, Vol. 56, No. 3, 2023, pp. 547–552.

[50] Pedari, Y., Waleed, D., Espinosa, L. A. D., and Ossareh, H. R., “Robust State Estimation for Satellite Formations in the Presence

of Unreliable Measurements,” 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2023, pp.

2933–2939.

[51] Morgan, D., Chung, S.-J., Blackmore, L., Acikmese, B., Bayard, D., and Hadaegh, F. Y., “Swarm-keeping strategies for

spacecraft under 𝐽2 and atmospheric drag perturbations,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 5, 2012,

pp. 1492–1506.

[52] Wu, B., Xu, G., and Cao, X., “Relative dynamics and control for satellite formation: accommodating 𝐽2 perturbation,” Journal

of Aerospace Engineering, Vol. 29, No. 4, 2016, p. 04016011.

[53] Curtis, H. D., Orbital mechanics for engineering students, Butterworth-Heinemann, 2019.

[54] Schweighart, S. A., “Development and analysis of a high fidelity linearized 𝐽2 model for satellite formation flying,” Ph.D. thesis,

Massachusetts Institute of Technology, 2001.

42

https://doi.org/10.1109/SMC53992.2023.10394556
https://doi.org/10.2514/1.G007206

[55] Basu, H., Pedari, Y., Almassalkhi, M., and Ossareh, H. R., “Comparative Analysis of Satellite Relative Dynamics and

Fuel-Optimal Trajectory Planning of Satellites Using Minimum Distance Assignment,” Proceedings of the 2022 American

Control Conference (ACC), 2022, pp. 4023–4029. https://doi.org/10.23919/ACC53348.2022.9867860.

[56] Chen, Z., Zhang, H., Wang, X., Yang, J., and Dui, H., “Reliability analysis and redundancy design of satellite communication

system based on a novel Bayesian environmental importance,” Reliability Engineering & System Safety, Vol. 243, 2024, p.

109813.

[57] Agency, E. S., “About Space Debris,” https://www.esa.int/Space_Safety/Space_Debris/About_space_debris, 2024. Accessed:

January 16, 2024.

[58] Howell, E., “Van Allen Radiation Belts: Facts & Findings,” https://www.space.com/33948-van-allen-radiation-belts.html, May

11 2018. Accessed: January 15 2024.

[59] “State-of-the-Art of Small Spacecraft Technology,” https://www.nasa.gov/smallsat-institute/sst-soa/soa-communications/, Jul

28 2023. Accessed: January 15 2024.

[60] Dengiz, B., Altiparmak, F., and Smith, A. E., “Efficient optimization of all-terminal reliable networks, using an evolutionary

approach,” IEEE transactions on Reliability, Vol. 46, No. 1, 2002, pp. 18–26.

[61] Morgan, D., Chung, S.-J., Blackmore, L., Acikmese, B., Bayard, D., and Hadaegh, F. Y., “Swarm-Keeping Strategies for

Spacecraft Under J2 and Atmospheric Drag Perturbations,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 5, 2012,

pp. 1492–1506. https://doi.org/10.2514/1.55705, URL https://arc.aiaa.org/doi/10.2514/1.55705.

[62] AboElFotoh, H. M., and Colbourn, C. J., “Computing 2-terminal reliability for radio-broadcast networks,” IEEE Transactions

on Reliability, Vol. 38, No. 5, 2002, pp. 538–555.

[63] Paredes, R., Dueñas-Osorio, L., Meel, K. S., and Vardi, M. Y., “Principled network reliability approximation: A counting-based

approach,” Reliability Engineering & System Safety, Vol. 191, 2019, p. 106472.

[64] Yaglom, A. M., and Yaglom, I. M., Challenging mathematical problems with elementary solutions, Vol. I, Combinatorial

Analysis and Probability Theory, Holden-Day, San Francisco, 1964. Translated by J. McCawley, Jr., revised and edited by B.

Gordon.

[65] Welzl, E., “Smallest enclosing disks (balls and ellipsoids),” New Results and New Trends in Computer Science, Lecture Notes in

Computer Science, Vol. 555, edited by H. Maurer, Springer, Berlin, Heidelberg, 1991, pp. 359–370.

[66] Ye, M., and Kolmanovsky, I., “Approximating optimal control by shrinking horizon model predictive control for spacecraft

rendezvous and docking,” IFAC-PapersOnLine, Vol. 55, No. 16, 2022, pp. 284–289. https://doi.org/10.1016/j.ifacol.2022.09.038,

18th IFAC Workshop on Control Applications of Optimization CAO 2022.

[67] Choset, H., “Robotic motion planning: Potential functions,” Robotics Institute, Carnegie Mellon University, Vol. 164, 2010.

43

https://doi.org/10.23919/ACC53348.2022.9867860
https://www.esa.int/Space_Safety/Space_Debris/About_space_debris
https://www.space.com/33948-van-allen-radiation-belts.html
https://www.nasa.gov/smallsat-institute/sst-soa/soa-communications/
https://doi.org/10.2514/1.55705
https://arc.aiaa.org/doi/10.2514/1.55705
https://doi.org/10.1016/j.ifacol.2022.09.038

[68] Bounini, F., Gingras, D., Pollart, H., and Gruyer, D., “Modified artificial potential field method for online path planning

applications,” 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2017, pp. 180–185.

[69] Park, M. G., Jeon, J. H., and Lee, M. C., “Obstacle Avoidance for Mobile Robots Using Artificial Potential Field Approach with

Simulated Annealing,” Proceedings of the 2001 IEEE International Symposium on Industrial Electronics (ISIE), Vol. 3, IEEE,

Pusan, South Korea, 2001, pp. 1530–1535. https://doi.org/10.1109/ISIE.2001.931933, cat. No. 01TH8570.

[70] Bodin, P., Noteborn, R., Larsson, R., Karlsson, T., D’Amico, S., Ardaens, J. S., Delpech, M., and Berges, J.-C., “The prisma

formation flying demonstrator: Overview and conclusions from the nominal mission,” Advances in the Astronautical Sciences,

Vol. 144, No. 2012, 2012, pp. 441–460.

[71] Roth, N. H., Risi, B., Grant, C., and Zee, R., “Flight results from the CanX-4 and CanX-5 formation flying mission,” Proceedings

of the Small Satellites, Systems & Services Symposium (4S), Valletta, Malta, 2016, pp. 1–15.

[72] Schaub, H., and Junkins, J. L., Analytical mechanics of space systems, Aiaa, 2003.

[73] Gao, Z., Fang, K., Wang, Z., Guo, K., and Liu, Y., “An error overbounding method based on a Gaussian mixture model with

uncertainty estimation for a dual-frequency ground-based augmentation system,” Remote Sensing, Vol. 14, No. 5, 2022, p. 1111.

[74] Pfeifer, T., and Protzel, P., “Expectation-maximization for adaptive mixture models in graph optimization,” 2019 international

conference on robotics and automation (ICRA), IEEE, 2019, pp. 3151–3157.

[75] Gupta, S., and Gao, G., “Data-driven protection levels for camera and 3D map-based safe urban localization,” Navigation,

Vol. 68, No. 3, 2021, pp. 643–660.

[76] NovAtel Inc., “OEMV-1 Series Product Sheet (incl. OEMV-1G),” https://hexagondownloads.blob.core.windows.net/public/

Novatel/assets/Documents/Papers/OEMV-1_Series/OEMV-1_Series.pdf, 2013. D14938 Rev 3. Single-point L1 horizontal

accuracy: 1.5 m RMS.

[77] Howard, R. T., Heaton, A. F., Pinson, R. M., and Carrington, C. K., “Orbital express advanced video guidance sensor,” 2008

IEEE Aerospace Conference, IEEE, 2008, pp. 1–10.

[78] Aglietti, G. S., Taylor, B., Fellowes, S., Ainley, S., Tye, D., Cox, C., Zarkesh, A., Mafficini, A., Vinkoff, N., Bashford, K., et al.,

“RemoveDEBRIS: An in-orbit demonstration of technologies for the removal of space debris,” The Aeronautical Journal, Vol.

124, No. 1271, 2020, pp. 1–23.

[79] Ruel, S., Luu, T., and Berube, A., “Space shuttle testing of the TriDAR 3D rendezvous and docking sensor,” Journal of Field

robotics, Vol. 29, No. 4, 2012, pp. 535–553.

[80] Delpech, M., Guidotti, P.-Y., Grelier, T., and Harr, J., “RF based navigation for PRISMA and other formation flying missions in

earth orbits,” Advances in the Astronautical Sciences, Vol. 135, No. 2, 2009, pp. 1533–1551.

[81] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S., “OSQP: An operator splitting solver for quadratic programs,”

Mathematical Programming Computation, Vol. 12, No. 4, 2020, pp. 637–672.

44

https://doi.org/10.1109/ISIE.2001.931933
https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Papers/OEMV-1_Series/OEMV-1_Series.pdf
https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Papers/OEMV-1_Series/OEMV-1_Series.pdf

[82] Forrest, J., and Lougee-Heimer, R., “CBC user guide,” Emerging theory, methods, and applications, INFORMS, 2005, pp.

257–277.

[83] Srivaree-Ratana, C., Konak, A., and Smith, A. E., “Estimation of all-terminal network reliability using an artificial neural

network,” Computers & Operations Research, Vol. 29, No. 7, 2002, pp. 849–868.

45

	Introduction
	Motivation
	Literature Review
	Proposed Framework and Original Contributions

	Satellite Relative Dynamics Modeling
	High-fidelity Nonlinear Model
	J2 Linearized Model

	Planning Layer
	Formation Planning
	Iterative Reliability-Maximizing Placement of Redundant Satellites (Step 1)
	Assignment of Terminal Velocities (Step 2)

	Trajectory Planning (TP)
	Fuel matrix calculation (Step 1)
	 Trajectory Assignment with Collision Avoidance (TACA) (Step 2)
	Trajectory Optimization (TO) (Step 3)
	Shrinking-horizon Model-predictive Control (SHMPC) (Step 4)

	Control Layer
	Real-time Controller
	Robust Estimation

	High-Fidelity Simulation and Hardware-in-the-Loop Validation
	High-Fidelity Simulation Mission
	Hardware-in-the-Loop (HIL) Validation of TP

	Conclusions

