
Supporting Material for “Neural language representations predict
outcomes of scientific research”
James P. Bagrow1,2,*, Daniel Berenberg3,2, and Joshua Bongard3,2

1Department of Mathematics & Statistics, University of Vermont, Burlington, VT, United States
2Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States
3Department of Computer Science, University of Vermont, Burlington, VT, United States
*Corresponding author. Email: james.bagrow@uvm.edu, Homepage: bagrow.com

May 17, 2018

Contents
S1 Datasets S1
S2 Predictive models S2

S2.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2
S2.2 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3

S3 Mean-value baseline cannot explain neural network predictions S3
S4 Using ensemble disagreement to select candidate correlate pairs S3

List of figures
S1 The neural network architecture, visualized using Keras. . . . . . . . . . . . . . . . . . . . S2
S2 The mean-value baseline model performs significantly worse than the neural network. . . . . S4
S3 The mean value baseline provides less information to infill multi-paper correlation tables

than the neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4
S4 Difference in infilled predictions between mean-value baseline and neural network . . . . . . S5

List of tables
S1 Candidate correlate pairs with ensemble disagreement in the Top 1%. . . . . . . . . . . . . S6

S1 Datasets

We used the metaBUS data release v2.08 for our corpus of correlate pairs. These data are available for
download at http://www.frankbosco.com/data/CorrelationalEffectSizeBenchmarks.html. More up-to-date
data are searchable using the metaBUS web interface: http://metabus.org. We also used the 300-dimension
(English) word vector representations released by the ConceptNet project called ConceptNet Numberbatch,
specifically version 17.06: https://github.com/commonsense/conceptnet-numberbatch.

The correlate texts have already been curated by the metaBUS team but we performed some further
processing to connect the individual words (tokens) to terms in Numberbatch. Nonalphanumeric characters
were removed, casing was removed, and text was tokenized on whitespace. Tokens were then mapped
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Figure S1: The neural network architecture, visualized using Keras.

to corresponding word vector indices in Numberbatch. A vector “index” of 0 was reserved for tokens in
metaBUS not present in Numberbatch. The neural network is able to handle tokens outside the vocabulary
of Numberbatch, although predictive performance is likely wose when many tokens are missing than when
few or no tokens are missing.

S2 Predictive models

Here we describe the neural networks used in our study.

S2.1 Network Architecture

Our architecture takes two text sequences (the correlate pairs) and outputs their predicted correlation r̂ . The
first layer consists of two inputs, one for each sequence, which lead into a static, untrainable embedding layer
that translates each word in each sequence to its 300-dimensional word vector representation. Then, each
word vector tensor passes through a stack of two Long Short-TermMemory (LSTM) layers of 300 units. The
outputs of the second LSTM are then concatenated and sent though a dense layer of 350 units, which then
feeds to a single output unit with a tanh activation. The tanh activation function constrains the network to
predict r̂ ∈ [−1, 1]. We use ReLU activation functions In the two LSTM and single dense layers preceding
the final unit.
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S2.2 Training Procedure

Models were trained for a maximum of 200 epochs with a batch size of 1024 using the Adam optimization
method [1] with an MSE objective function and a learning rate of 0.001. We randomly split the metaBUS
corpus into 80% training and 20% testing, and reserved 10% of the training portion as validation data.
The weights of the LSTM layers were initialized using the He normal method [2]. To monitor and avoid
overfitting, we apply two different methods: dropout and early stopping. At each trainable layer of the
model (all excluding the embedding layer) we apply a dropout rate of 0.15, meaning at each training step
approximately 15% of any given layer does not contribute to the prediction at that step, putting more pressure
on each individual unit to learn valuable information [3]. Meanwhile, the early stoppingmechanismmonitors
the loss of themodel on the validation data: if the validation loss does not improve after 8 consecutive training
epochs, the training is terminated and the best model so far is saved, reducing wasted computational time
and helping to prevent overfitting [4]. Each of the models was trained using the Keras 2.1.6 Python library
with a Tensorflow backend on an NVIDIA Tesla K80 GPU.

S3 Mean-value baseline cannot explain neural network predictions

To determine if the neural network is simply memorizing the correlations present in the training data, we
implemented a simple baseline or mean-value procedure: when predicting the correlation between pairs ci
and cj , simply predict the mean of all previously reported correlations involving either ci or cj .

The predictive accuracy of the mean-value baseline (R = 0.54) is significantly lower than the neural
network (R = 0.82) (Fig. S2). Further, the mean-value baseline is not as effective as the neural network at
infilling the multi-paper correlation table shown in the main text. We compare their predictions in Figs. S3
and S4. Note that the mean-value infills are computed using the full training corpus, not the reported
correlations shown in these 10 papers only. There is considerable information present in the difference
between these infilled correlation tables, further illustrating the usefulness of the neural network above that
of the mean-value baseline.

Of course, this mean value model can be improved by computing a weighted mean using the similarities
of the correlates, for example by cosine distance between their word vector representations, but at that point
it is probably more appropriate to use the neural network we applied in the main text.

S4 Using ensemble disagreement to select candidate correlate pairs

We trained an ensemble of N = 50 neural networks to build the “committee” used to select candidate
correlate pairs in the main text. These models were similar to the main model shown in Fig. S1 but simpler.
The primary difference is that they consisted of only one LSTM layer.

To maintain a diverse ensemble of models, a common goal for ensemble learning [5, 6], we took the
following steps. Each model was trained on a bootstrap replicate of the complete metaBUS dataset, meaning
that an approximately 1−1/e fraction of the data of will be out-of-bag for eachmember of the ensemble. Next
before training each model we randomized some of its hyperparameters over a range of values. Specifically
we chose for each member a random number of LSTM units between 150 and 250, and a random number of
dense units between 100 and 200. We also gave the LSTM layer a random dropout rate between 0.1 and 0.2,
and also the dense layer’s dropout rate was randomly chosen between 0.1 and 0.2. A batch size of 512 was
used for training and a 10% validation sample was reserved for early stopping (3 epochs as opposed to 8 for
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(a) Neural network.
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(b) Mean-value baseline

Figure S2: The mean-value baseline model (b) performs significantly worse at prediction than the neural network (a)
we used in the main text. It performs especially poorly in comparison for negative correlations.

Network predictions Null (mean) predictions

Figure S3: The mean value baseline provides less information to infill multi-paper correlation tables than the neural
network.
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Figure S4: Difference in infilled predictions between mean-value baseline and neural network. This figure shows
the difference between the matrices shown in Fig. S3. Positive values indicate the neural network predicts higher
correlations than the baseline, negative values indicate the baseline predicts higher values than the neural network. We
see distinct patterns in the difference, underscoring the presence of information in the neural network predictions not
present in the mean-value baseline.

the main model). No activation function was used on the output unit, as opposed to the tanh function used
for the main model.

Table S1 shows the correlates with the 1% most ensemble disagreement. We see a number of interesting
pairs just from the small (n = 5000 pairs; main text) search.
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Table S1: Candidate correlate pairs with ensemble disagreement in the Top 1%.

Correlate 1 Correlate 2 E[r̂] σ(r̂)

Aggression-supervisor Video characteristics: Number of
concrete statements 0.033091 0.240711

actor trust Mean rating (T2) Fairness condition
Middle performer 0.324968 0.225283

Novice completion time (Task 1, in
seconds) Organization embeddedness -0.040126 0.220755

Experimental 3- item loading
assumption Physical (compensation scale) 0.167164 0.202105

Obstructionism Meeting format -0.083101 0.199643
Counterfactual thinking regarding
treatment toward self Value of surveys -0.104113 0.197323

Job analysis: Detail of descriptor Mean rating (T2) Motivating condition
Middle performer 0.062453 0.185485

Interpersonal affect Global job satisfaction (1-5) 0.306790 0.184210
Counterfactual thinking regarding
treatment toward self Preview information -0.098595 0.180608

Anticipated regret about persistence (-10
to + 10) Bases of power: Referent (field training) 0.120924 0.180003

Social forces Desire (discretion) 0.032081 0.178413
Neuroticism Instructor characteristics: Teaching skill -0.184349 0.176696

Behavior Commission Instructor characteristics: Completion
time on task (in minutes) -0.095671 0.174231

G coefficient variance component (z
score) Job Satisfaction -0.082509 0.173581

Behavioral intentions Recommendations made -0.009320 0.173255
Manipulation check PA Hardworking 0.451182 0.172144
Correlational accuracy Satisfaction -0.041887 0.171874
Modem Racism Scale (MRS) Exhaustion -0.059882 0.171266
Trust (T1) Military invasive -0.008274 0.170604
Organizational tenure On-time retirement 0.105206 0.167623

Gross domestic product Time 2 variables: Job search behavior
(unemployed group) -0.376718 0.167058

Mean rating (T1) Fairness condition
Middle performer Performance (Time 2) (T2) 0.236572 0.166747

Work satisfaction Simple Nonstrategic Actions (P) -0.237742 0.166404
Competition GRO X Gender 0.124175 0.166231
course-content variables: Instructor
experience Number of basic statements -0.076577 0.166137

Noncompliant behavior Diary-keeping condition: Task condition -0.167971 0.166024
Sum of PcVc Skill transfer -0.039455 0.165213

Intent to leave Unit (Participants = fixed hourly pay
system) -0.032186 0.163733

Recommendations made Job analysis: Procedures for developing 0.050139 0.162057
Direct contact Justification Question l 0.140842 0.161316
Intensity Verdict ratings -0.025061 0.161030

Continued on next page
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Correlate 1 Correlate 2 E[r̂] σ(r̂)
Accuracy measure: Borman’s
differential accuracy Biodata inventory (Difference Score) 0.143893 0.160265

G coefficient variance component (z
score) Research implementation -0.028003 0.159969

Work intensity Instructor characteristics: Expertise 0.182853 0.159930
Outcome expectancy Emotional demands (T2) -0.026845 0.159219
Competency modeling: Ranking
descriptor Socialization (CPI) 0.276968 0.158227

Conscientiousness Cognitive X Physical -0.040164 0.157618

Radiotherapy assistant
Prosocial Motivation X Manager
Integrity X Dispositional Trust
Propensity

-0.105287 0.157335

Standard Occupational Classification
(SOC) major group Perceived interactional justice -0.430987 0.157139

Reaction to peer ratings for evaluation
(wage) purposes

True/false Scoially Desirable
Responding Score (Honest condition) 0.137170 0.157074

Average monitoring intensity Average exam performance -0.052568 0.156633
Direct commitment (easy goal
condition) Skilled Trades 0.508497 0.156310

Organizational attract. T3 Grip-Left (Female Sample) 0.217855 0.156064
Overall handshake Feels superior 0.344592 0.155691
DCS: W (Time 1) Ratings of others’ contribution (RO) -0.091074 0.155611

Expected utility of withdrawal Organizational Commitment
Questionnaire (OCQ) Item 14 -0.342942 0.154830

HS/T3 Team commitment 0.083982 0.154235
Performance Supervisor: L Perf/L Inc -0.135945 0.153173
NEO Personality Inventory-Revised:
Angry Hostility Scale (A-H)

Role perceptions Help-S (helping aimed
at the supervisor) 0.053814 0.153112

NEO Personality Inventory-Revised:
Angry Hostility Scale (A-H) Flexibility (In-basket) 0.147563 0.152931
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