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S1 Dataset

We use a set of de-identified billing records from a Western European mobile phone service provider [1,
2, 3,4, 5, 6]. The records cover approximately 10M subscribers within a single country over 3 years of
activity. Each billing record, for voice and text services, contains the unique identifiers of the caller placing
the call and the callee receiving the call; an identifier for the cellular antenna (tower) that handled the call;
and the date and time when the call was placed. Coupled with a dataset describing the locations (latitude
and longitude) of cellular towers, we have the approximate location of the caller when placing the call. For



this work we do not distinguish between voice calls and text messages, and refer to either communication
type as a “call.”

These phone records cover approximately 20% of the country’s mobile phone market. However, we also
possess identification numbers for phones that are outside the service provider but that make or receive calls
to users within the company. While we do not possess any other information about these lines, nor anything
about their users or calls that are made to other numbers outside the service provider, we do have records
pertaining to all calls placed to or from those ID numbers involving subscribers covered by our dataset.
Thus egocentric networks [7] between users within the company and their immediate neighbors only are
complete. This information was used to generate egocentric communication networks and to study the MFC
probability and its relationship to human mobility patterns.

We generate a sample population of approximately 90k users (specifically, N = 88137), using the criteria
introduced in [3]. Each user’s call history during our nine-month tracking period yields three time series: (i)
event times for when calls are made, kept to an hourly resolution; (ii) locations of calls, as quantified by the
cellular tower transmitting the call; and (iii) communication partners who receive calls. These time series
allow us to reconstruct both geographic trajectories and egocentric communication networks for each user.

S2 Mobility networks

We construct for each sample user a weighted, directed mobility network G (or MobNet for short) using
the user’s time-ordered trajectory {L(t1), L(t2), ...}, where L(¢) is the location the user called from at time .
Each link (L; — L;) in G represents the user placing a call at location L; followed by a call at location L;.
The weight on link (L; — L) gives the number of times the user made that particular relocation during the
sample window.

In Fig. Aa we draw the mobility network of a single user. This network was drawn using a typical force-
directed graph layout algorithm [8] and does not use geographic tower locations. We see several dense cores
comprising groups of frequently visited locations as well as a number of long loops or chains representing
sequential calls placed during one-time, typically long-range trips. These mobility networks feature broad
degree distributions, well described by a truncated power law of the form Pr(k) ~ kPe™*/% for constants
B and «, where k is the number of connections of a location (or number of unique locations visited before
or after visiting that location). The nature of this broad distribution is not surprising given the Zipf law
for location selections, observed in [2] (see also Main text Fig. 4a). Although one may not expect this
distribution to hold for both in- and out-degrees, we do observe similar patterns in our directed networks.

S3 Mobility habitats

In this work we start by identifying groups of related locations, for each user. These groups may correspond
to home, work, school, or any number of other contexts throughout daily life. (In practice, we find that the
most occupied habitat accounts for the majority of activity and thus must be both home and work, home
and school, etc.) The mobility networks we study are inherently spatial, possessing a unique geographical
embedding, yet we do not discover these groups through spatial clustering methods, so it may be misleading
to refer to these groups as clusters. Likewise, although we use a community detection method known as
Infomap [9] to find these groups, mobility networks are not social networks, so referring to these groups as
communities may also be misleading. To avoid confusion, we instead term these groups “habitats.” We rank
each user’s habitats by the total number of phone calls that occur within the habitat, so that Habitat 1 is most
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Figure A: Properties of mobility networks. (a) An example mobility network (MobNet), drawn without using spatial coordinates.
Several dense cores are visible, as are a number of unusually long loops, representing one-time trips. Node colors indicate habitats,
discovered using Infomap [9]. Link weights and directions have been omitted for clarity. (b) Degree distributions (undirected,
outdegree, and indegree) for all MobNets. All are well described by a power law with an exponential cutoff, Pr(k) ~ k#e7*/,
meaning that users typically visit many locations only a small number of times while a few locations are visited many times. Note
that here “degree” refers to the number of connections per location (the number of unique locations visited before or after visiting
that location) not the number of communication partners a user has.

active, Habitat 2 is second most active, etc. Habitats are not ranked by number of locations, though these
tend to correlate. See Methods and materials in the main text for details on how to apply Infomap.

S3.1 Justification for Infomap

There are numerous algorithms for detecting communities in networks [10]. We believe Infomap to be
ideally suited for our purposes here, for two main reasons. The first reason is that it is specifically capable
of handling both weighted and directed networks, and much of the focus of the original publication [9]
was devoted to the sometimes confusing effects of community structure in directed networks. Infomap’s
theoretical basis rests upon the notion of random walkers moving through the network. These walkers can
readily adapt to link weights and link directions, no modifications to the underlying algorithm are necessary.

The second reason for adopting Infomap relates to a result from Park, Lee, and Gonzélez [11]. They
present the at-first-glance paradoxical result that a random walk model on an empirically-derived mobility
network does well at reproducing macroscopic phenomena such as the gyradius. This seems surprising given
that human beings have long-term memory, and consistently travel between fixed sets of destinations [2],
unlike a diffusing random walker. Even in [3] it was shown, using estimates of the Kolmogorov entropy of a
human trajectory, that there is more information in a trajectory than estimated by the Shannon entropy alone.
(The resolution of this paradox is to note that a random walker exploring a new space of locations will not
be able to generate mobility networks such as those we derive from the mobile phone data; a more complex
modeling framework is necessary [4].) Thus, while there is information in a human trajectory beyond
the mobility network, the mobility network still captures a great deal of mobility phenomena. Infomap’s
theoretical basis exactly matches this random-walker-on-a-mobility-network model.

S3.2 Additional properties of mobility habitats

We remark on several additional features of mobility habitats not fully discussed in the main text. In Fig. B
we plot the distributions over the sampled user population of several quantities of interest for the habitats.
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Figure B: Additional habitat statistics. We plot the complementary cumulative distributions of habitat size (fraction of unique
locations within the habitat), habitat weight (fraction of calls placed from within the habitat), the fraction of days during the
nine-month window where the user was active and was observed in the habitat, and the habitat radius of gyration. The gyradii
distributions were also shown in main text Fig. 2a. We see that the primary habitat occupies most locations, the majority of phone
activity, and that most users are found in the habitat nearly every day. Thus the primary habitat captures the majority of user
dynamics.

These are the “size” of each habitat, as given by the number of unique locations within the habitat; the
“weight” of each habitat, given by the fraction of phone calls placed from locations within the habitat; the
fraction of days during the nine-month sample window where the user was active making calls and observed
in the habitat; and the distribution of habitat spatial extent, given by the gyradius. We see that the primary
habitat tends to contain most locations and the overwhelming majority of call activity, and that many users
appear in their primary habitat almost every day. Thus the primary habitat alone tends to capture the intrinsic
or typical day-to-day activity of a user.

We explore more relationships between habitats, spatial features, and call activity in Fig. C. We begin in
Fig. Ca by plotting the distribution of the average number of locations per habitat. This distribution is very
sharply peaked around 7-8 locations per habitat, implying a typical habitat size (in numbers of locations,
not spatial extent). In Fig. Cb we consider the average number of calls (either voice or text) placed by users
as a function of their total number of habitats. We see a slow increasing trend.

Meanwhile, a number of user features can be related to the total gyradius R,. In Fig. Cc we study habitat
weight vs. R,. We see that this weight is approximately 1 until Rg ~ R, after which it slowly decays to
around 0.5, on average. This means that users tend to be less concentrated within their main habitat as their
movements grow, which makes sense. We return to the distribution of R, in Fig. Cd but now consider it
conditioned on users having a specific number of habitats total. We see that users with a single habitat tend
to have far smaller Ry than users with more than one habitat, which is reasonable, while users with three
habitats have a similar R, distribution as users with only two habitats. A related quantity is the average
number of habitats as a function of R,, shown in Fig. Ce. This number is essentially flat at one habitat until
Ry ~ 1 km, after which it slowly grows with R,.

It is especially interesting to compare social activity with Rg, as was done in main text Fig. 5. Doing so
further sheds light on some of the main text results regarding Pympc and freciprocal> the fraction of ties that are
reciprocated. First a question of data sparsity. It seems reasonable that users with very low R, may simply
not use their mobile phones much. In Fig. Cf we show that this is not the case by computing the average
number of calls as a function of R,: users with low R, actually tend to make more calls and this call volume
slowly decays as Ry grows. Perhaps this means that low R, users have more social contacts than users with
higher R,? To see this we plot in Fig. Cg the number of unique call recipients as a function of R, and we
see a rather dramatic increase in these ties at or slightly before Ry ~ R.. This means that users tend to have
much more diverse calling patterns when they seldom move, although we caution that the statistics are not
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Figure C: More habitat properties. (a) The distribution of the average number of locations per habitat is narrowly peaked around
7-8 locations per habitat, with only a handful of habitats containing large numbers of locations. (b) The total number of calls placed
by users as a function of the number of habitats. There is a weak increasing trend. (¢) The fraction of call activity w(h,) occurring
in the primary habitat as a function of R,. The majority of activity occurs within the primary habitat. This slowly drops as R,
grows, though the trend is weak. (d) The distribution of R, for users with a given number of habitats N(H). We see that users with
a single habitat tend to have smaller total R, than users with multiple habitats, whereas the distributions of R, change less for users
with multiple habitats as the number of habitats increases. (e) The average number of habitats vs. R,. Compare this with main text
Fig. 2B. (f) The average total number of calls shows a slight, relatively constant downward trend with R,. (g) The average number
of ties vs. R,. We see that users with small R, show a sharp increase in the number ties, an effect stronger than the increase in the
number of calls shown in f. (h) The average number of reciprocated ties vs. R;. We see no consistent trend as R, varies. This means
that the increase in the fraction of reciprocated ties for users with R, > R,, shown in main text Fig. 5D, is due to the decrease in
the number of non-reciprocated ties as R, increases, show here in g. (Inset) The number of reciprocated ties as a function of the
number of habitats N(H). We see a dependence for N(H) < 20. Error bars represent +1 s.e.

plentiful at the extreme range of R,. Likewise, an important fact is that these ties may not all be meaningful.
As mentioned in the Materials and Methods section of the main text, we estimate a tie to be meaningful if it
is reciprocated. In Fig. Ch we see that the average number of reciprocated ties is approximately independent
of Ry, implying that, while many different activity features are affected by mobility phenomena, the number
of meaningful social ties may be constant regardless. (On the other hand, we do see a weak dependence
on the number of habitats, see inset.) The famous Dunbar’s number [12] fixing the maximum size of one’s
social circle is a relevant quantity of interest.

Another spatial feature we study here is the spatial extent of habitat &, captured by its gyradius ry(h),
as a function of the rank & of the habitat. We show in Fig. D that more active (lower /) habitats tend to be
smaller on average, going from ry ~ 10 km to ry ~ 20 km as & goes from 1 to 3. However, we see a rapid
saturation in r, to values typically between 25 to 30 km, for & > 5. This indicates that there is an intrinsic
upper bound on effective habitat spatial extent, further emphasizing their cohesive nature.

Finally, we also study the distribution of habitat entrance times #y(%), the time it takes for the user to first
enter a location within habitat / (# = 0 is the time of the user’s first call). In the main text we show how the
delay in entering habitats greatly alters the temporal scaling in r,, so that habitats grow only logarithmically
in time, distinct from the polylogarithmic growth reported in the literature for the full mobility pattern [2, 4].
We present in Fig. E the complementary cumulative distributions of #y for the first three habitats, as well as
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Figure E: Population distributions of habitat arrival times. The distributions of times 7, when each user placed his or her first
call from any location or from within a habitat. Different curves represent groups of users with different total gyradius R,. We see
that most users place their first call within Habitat 1 very early, often within a day of the start of data collection. As R, grows, these
distributions change only slightly, with far ranging travelers having a slightly higher probability of delaying their first appearance
in Habitat 1 (green curve). Habitats 2 and 3 show longer waits until users arrive at these locations. Interestingly, there is only a
minor dependence on R,: users with smaller values of R, (red curve) tend to wait slightly longer to enter these habitats.

the time it takes for the first call to occur (which can be thought of as #y for all locations). We see that the
distribution for Habitat 1 is functionally similar to the total distribution, while #y for Habitats 2 and 3 tends
to be higher in value. We see a minor dependence on the total mobility extent, quantified with R,y: Users
with higher R, tend to wait longer before entering Habitat 1, perhaps because they are more likely to be
traveling far from home when data collection begins, while users with lower R, tend to wait slightly longer
before entering Habitats 2 or 3, perhaps because they tend to travel less frequently. These results further
emphasize the fundamental role that mobility habitats play in determining the magnitude and dynamics of
human mobility and travel patterns.

S4 Demographic and communication effects

We decompose the sample population by self-reported age and gender, and present the results from main
text Fig. 5 with respect to different age and gender groups. Results for the different groups are shown in
Fig. Fa and Fb. We see the same overall features for these groups, with some small quantitative differences,
that we observed in the main text for the entire population. We also compare in Fig. Fc the probability of
calling the most frequent contact (Pypc) with the cumulative probabilities of calling the top-two and top-
three most frequently contacted communication partners. We see that the cumulative probabilities exhibit a
similar trend as Pyrc with respect to mobility, suggesting that the relationship between mobility patterns and
interaction concentration captured by Pyrc is stable over the most frequently contacted partners. Finally, in
Fig. G we study the fraction of ties that are reciprocated freciprocal for different age and gender groups. We
see a small increase in freciprocal fOr users under the age of 30, compared with older users, while there is no
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Figure F: Demographics and extensions of interaction concentration. (a) Age groups. Users older than fifty tend to be less
concentrated on their MFC, while younger generations focus more on their MFC. (“All” indicates all users with self-reported age.)
(b) Gender groups. Female users call slightly more to their MFC than male users. (“All” indicates all users with self-reported
gender.) (¢) The cumulative probabilities for calling the top-two and top-three most frequently contacted friends exhibit similar
trends as Pypc With respect to the mobility measures. Overall, the primary difference for the demographic groups is the average
value of their respective Pyrc. After accounting for this, we observe the same relationships between Pyrc and mobility.

dependence on gender.

S5 Data sparsity

There is an important factor to consider when using mobile phone data and that is how phone usage affects
measurements, as data are available only when users engage their mobile phones. While we select active
users using the criteria of [3], specifically intended to mitigate such problems, there still exist many time
periods where a user does not use the phone and thus we do not have any information. We now study this in
further detail.

We compute for each user the fraction of hours ¢, out of the nine-month window, where the user is not
active. In Fig. H we plot the distribution of ¢ over the 90k users; we see that users are inactive on average
around 75% of the time. (This distribution, and its consequences, was also discussed in [3].) While this may
seem problematic at first, we are able to proceed because we are integrating over such a long time window,
extracting robust amounts of data for the quantities we are interested in. For example, in Fig. H we also plot
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Figure G: Demographics and tie reciprocity. (a) Age groups. Users under the age of 30 tend to have slightly more reciprocated
ties than older users. (b) Gender groups. The fraction of reciprocated ties shows no dependence on user gender.
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Figure H: Missing data do not affect most statistics.
Mobile phone data is inherently incomplete since data is
only available when users place calls. We apply the selec-
tion criteria used in [3] to mitigate the missing data issue.
When considering the fraction of hours ¢ without data out
of the 34 weeks, we see that users are typically missing
data ~ 75% of the time (a). One may expect this to cause
bias, yet for a number of measures (b—d) we see almost
no trend in the shaded region (containing = 95% of the
population). Only for the gyradius (d) do we see a minor
dependence for higher values of ¢g. These results indicate
that our measures are not sensitive to missing data. Error
bars indicate +1 s.d.

the number of communication partners k, the distance between the first and second habitats d(h,, i), and
the total gyradius Rg, all as a function of the missing fraction g. We see almost no trend or dependence on
q. Meaning that users missing data 40% of the time give the same or similar statistics as users missing data
80% of the time, for example. Only for the gyradius do we see a small drop in R, for larger values of g. We
note, however, that even this trend remains within 1 s.d. and is thus not significant.
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Figure I: Temporal evolution of gyradius for real and null habitats. (a-c) Real habitats. The temporal evolution of <rg(h)> ~
log (¢ — 1) in all cases for user groups with total R, ~ 10, 30, and 100 km. Straight lines indicate fits of the form r, = Alog (¢ —1p) +
B, for constants A and B. (d-f) Null habitats. The same as a-c but for randomized control habitats, constructed for each user by
randomly reshuffling locations between habitats while preserving the number of habitats and the number of locations within each
habitat. We see the pure logarithmic scaling of 7, is lost.

S6 Controls and hypothesis tests

We introduce Habitat controls to determine how meaningful the discovered habitats are, where we use
different groupings of mobility locations to form control or null habitats. To compute habitat controls we
form randomized habitats by shuffling locations between the original habitats at random in such a way
as to preserve for each user both the number of habitats and the number of locations per habitat, strictly
controlling for the size distributions of the habitats. These control for the nature of the groupings we find
and whether or not it is meaningful for particular locations to share a habitat.

To begin, in Fig. Ia-c we show the temporal evolution of the gyradius r,(?) vs. # for the first three habitats.
We study three sets of users, with total R, ~ 10, 30, and 100 km, respectively. For all groups we see that
rg ~ log(t — ty), amplifying the results from main text Fig. 3d. Meanwhile, in Fig. Id-f we show the same
quantities but for the shuffled habitats where locations are randomized. We see that the pure logarithmic
time evolution is lost, indicating that the evolution we observe is not due to the relative sizes (numbers of
locations) of the habitats, nor to simply the number of habitats, but due more fundamentally to their spatial
structure and the spatiotemporal flows of the users.

Meanwhile, the results from main text Fig. 5 show an intriguing relationship between human mobility
and communication activity. Here we quantify the relationship using the Kendall’s 7 (tau-b) rank correlation
coeflicient [13], which is a nonparametric hypothesis test used to measure the association between two mea-
sured quantities. The coefficient 7 > 0 indicates positive association, 7 < 0 indicates negative association,
and 7 = 0 indicates the absence of association.

Mobility is evaluated by the number of habitats Ny and the total gyradius R,, while interaction concen-
tration is quantified by the probability of calling the most frequent contact Pyrc, the cumulative probability
of calling the top-three most frequently contacted partners Cyrc, and the total number of partners k.



Table A: Nonparametric correlations between mobility and communication. We quantify the relationship between mobility
(columns) and communication (rows) using Kendall’s 7 rank correlation coefficient. User mobility is evaluated by the number of
habitats Ny and the gyradius R,, and their concentration is evaluated by Pyrc, Cvrc (the cumulative probability of calling any
of the three most frequently contacted partners) and k (the number of partners). Each table entry shows the coefficient 7 and its
corresponding p-value (parenthesis). We see a negative association between Ny and Pyrc (and Cygc), while Ny and k are positively
correlated. An association between R, and the communication measures appears absent. However, when separating users with a
single habitat (Ny = 1) from the rest (N > 1), we see that the growth of R, has two opposite trends: within a single habitat, R,
grows with Pyrc; when users have more than one habitat, Pyrc begin to drop. This implies a coupling between mobility habitats
and interaction concentration, one that cannot be captured by R, alone.

Mobility
Communication Ny R, R, (Ny =1) Ry, (N > 1)
Pyrc —0.133 (< 2.2 x 10719) —0.00648 (0.0039) 0.354 (<22x1071%)  -0.0324 (< 2.2 x 1071)
CmMec —0.153 (< 2.2 x 10719) —-0.0127 (1.7 x 107%) 0.358 (<22 x 10719 —0.0369 (< 2.2 x 1071%)
k 0.214 (< 2.2 x 1071%) -0.0728 (<22 x 1071%)  —0.44 (<2.2x107'%)  —0.0619 (< 2.2 x 1071%)
Sreciprocal —0.0452 (< 2.2 x 10719 0.034 (< 2.2 x 107'%) 0.369 (< 2.2 x 10719 0.00462 (0.050929)

In Table A, we see a negative association between Ny and Pyrc (as well as Cyvpc), while Ny and k are
positively correlated. This suggests that people who are more habitually mobile (with more habitats) tend to
distribute their communication over more contacted ties.

An association between Ry and the communication measures at first appears absent. However, when
separating users who possess only a single habitat (Ng = 1) from those who don’t (Ng > 1), we discover
that the relationship with R, shows two opposing trends: for users with a single habitat, R, grows with
Pyvec; when users have more than one habitat, their Pypc begin to drop. These correlations suggest a
coupling between mobility habitats and interaction concentration, which cannot be captured by a single R
value. Similarly, for freciprocal the association with Ry is stronger when Ny = 1, than when Ny > 1.
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