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Abstract—The structure of a mobile ad hoc network changes
dynamically based on node positioning. We consider a setting in
which nodes can communicate if they are within a prescribed
distance of one another, giving rise to a communication network.
An example is a swarm of small satellites that cooperate to
perform tasks; such swarms are likely to become commonplace
in space missions. In this paper, we consider the problem of
adding a new node or repositioning a current node in the
network while optimizing a given network parameter such as
network reliability. Although there are infinitely many locations
to place the new node in space, there are only finitely many
possible changes to the communication network. We provide an
algorithm that enumerates all possible network changes in time
O(n2 logn) or O(n3 logn), for networks in 2- or 3-dimensional
Euclidean space, respectively. We apply the proposed algorithm
to a satellite swarm formation planning problem, where the goal
is to maximize network reliability.

Index Terms—network reliability, all-terminal reliability, geo-
metric graph

I. INTRODUCTION

A communication network between objects whose locations
are known can often be modeled by a geometric graph whose
vertices are labeled by the locations of the objects in 2-
or 3-dimensional Euclidean space, and whose edges connect
vertices within a certain communication radius r. When the
radius is 1, these are known as unit-disk graphs in two
dimensions [1], and unit-ball graphs in three (sometimes
known as unit-disk or unit-ball intersection graphs [2]). By
scaling, all geometric graphs considered in this paper are
equivalent to unit-disk or unit-ball graphs.

As a recurring example, we consider the formation planning
of satellite swarms. Swarms of small satellites have recently
received considerable attention in the literature due to their
increased flexibility, reliability, and reduced costs as com-
pared to monolithic missions (see, e.g., [3]). Each satellite is
equipped with the ability to communicate with other satellites
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within a certain distance, and the swarm must work together
to accomplish a certain task. The communication type may
be radio communication or optical communication, but we
assume that all satellites are equipped with the same com-
munication device, and thus that any two satellites which are
within distance 1 (after spatial scaling) should be able to com-
municate. The geometric graph induced by the satellites and
the communication links between them is, of course, dynamic;
the satellites are constantly moving. However, there are many
natural questions to ask about a static graph, representing the
formation at a given moment, which are useful in analyzing the
more complicated setting of a dynamic network. For instance,
the satellites and the communication links between them are
not perfectly reliable: an obstructing object, communication
failure, or hardware issue may render edges or vertices in the
unit-ball graph inoperable. To model these uncertainties, we
assign a probability of operation to each vertex and edge in the
unit-ball graph given by the formation. We use this model to
analyze the reliability of the formation, or the probability that
a message can be passed from any operational satellite to any
other. The objective of this paper is to provide an algorithm
to enumerate all possible changes to the network based on
the addition of a single satellite, and to apply this to find the
position of a new satellite which maximizes the reliability of
the communication network.

A first step towards this objective is to understand how
a set of balls of equal radius partitions 2- or 3-dimensional
space. Each region of intersection of a subset of the balls
corresponds to a neighborhood that a new vertex could have
if added to the associated unit-ball graph. It is known that n
circles partition the plane into at most n2−n+2 regions and
that n spheres partition space into at most (n3− 3n2 +8n)/3
regions [4]. However, to the best of our knowledge, there does
not appear to be an algorithm in the literature for enumerating
these regions. In Section III, we provide such an algorithm
with O(n2 log n) or O(n3 log n) complexity, depending on the
dimension. We enumerate these regions via an angular sweep
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around each center pi of a circle in R2, or pair of centers
pi, pj of spheres in R3, with a circle or sphere of the same
radius. We record other centers as they enter or exit the ball
during the sweep in order to list all of the sets of centers
which are contained in a ball with pi ∈ R2 or pi, pj ∈ R3

on its boundary (see Figure 1). The balls which correspond to
these sets of interior points, as well as the balls corresponding
to the interior and boundary point(s), intersect nontrivially. We
obtain all of the nontrivial intersections in this way.

Having enumerated the regions into which a set of balls
partitions space, we then determine a point to add a vertex
in each region. Motivated by our application, we choose the
point which minimizes the maximum distance to one of its
neighbors. Finding this point reduces to the smallest enclosing
ball problem, which can be solved in expected linear time
in the number of balls defining the region using Welzl’s
algorithm [5] or the methods of Gärtner and others [6]–[8]. In
summary, we provide a list of all unit-ball graphs obtainable
by adding a single vertex to an existing unit-ball graph G.
Applying this algorithm to each of the graphs obtained by
deleting a vertex from G, we list all of the unit-ball graphs
obtained by repositioning a vertex of G.

We have noted that the methods proposed here are useful
for designing and maintaining satellite formations with reliable
communication networks. There are a number of other appli-
cations in which one would like to alter a unit-ball graph,
meeting certain constraints, to maximize a quantity such as
reliability. Probabilistic unit-disk and unit-ball graphs have
been used to model radio-broadcast networks [9], multi-hop
networks [10], wireless sensor networks [11], [12], flying ad
hoc networks [13], mobile ad hoc networks [14], and mobile
wireless sensor networks [15]. Our algorithm for enumerating
the neighborhoods for a new vertex in a geometric graph
can be used to alter any such network with mobile nodes,
and, commonly, network reliability is of interest in these
applications. The authors of [16] provide an algorithm to
reduce the diameter of a unit-disk graph via node addition,
with the motivation of increasing the reliability and efficiency
of a wireless network. In comparison, our algorithm provides
an exact solution to the problem of maximizing the reliability
of a unit-disk or unit-ball graph via addition of a single
vertex. In our application to satellite communication networks,
while the locations of some satellites are predetermined to
accomplish a specific task, there may be redundant satellites
in the formation which can relocate in order to maximize the
reliability of the network. We use Monte Carlo simulations
along with our algorithm to determine the location for a single
satellite to travel which maximizes the probability that any
two operational satellites can communicate. In Section IV, we
elaborate on Monte Carlo simulations of reliability. Finally,
in Section V, we demonstrate the algorithms in Section III
and IV on a case study of a satellite swarm.

II. PRELIMINARIES AND PROBLEM STATEMENT

A graph G is a pair G = (V,E), where V is a set of vertices
(or nodes), and E is a set of unordered pairs of vertices, called

edges. The graph G is called a unit-disk graph if V ⊂ R2 and
uv ∈ E whenever the u and v are of distance at most 1 apart;
in R3, this is called a unit-ball graph. As the edges of a unit-
disk or unit-ball graph are determined by V , we will say that
V induces the unit-disk or unit-ball graph G. We use the term
geometric graph to mean a graph whose vertices are points
and whose edges connect vertices within a specified distance
r. The open neighborhood of a vertex v in G, denoted N(v),
is the set of vertices {u | uv ∈ E}; the cardinality of N(v) is
the degree of v, denoted d(v). We denote by G− v the graph
obtained by deleting the vertex v and its incident edges from
G, and, for a point p which is not in V , we denote by G+ p
the unit-disk or unit-ball graph induced by V ∪{p}. A path is
a graph whose edge set, under some ordering of the vertices
v0, . . . , vl, is {vi−1vi | i ∈ {1, . . . , l}}; we say that vertices x
and y are joined by a path if G contains a path with x = v0
and y = vl. If G is connected (i.e., any two vertices are joined
by a path), then a set of edges whose removal disconnects G
is called an edge-cut. A graph H on V whose edge set is
a subset of E is called a spanning subgraph of G; if H is
connected and contains no cycles, it is called a spanning tree.

There are varying notions of the robustness of a graph G
whose edges and/or vertices are not perfectly reliable (see [17]
for an overview). We concern ourselves with the robustness of
the connectedness of G: how likely is G to remain connected
when its edges and vertices are subject to failure? In particular,
we assign a probability of operation to each vertex v and edge
e in G, denoted by pv and pe, respectively. A probabilistic
graph GPr is a random graph sampled by deleting each vertex
v in G (and its incident edges) independently with probability
1−pv , and each remaining edge e independently with probabil-
ity 1− pe. The residual connectedness of G, denoted Rel(G),
is the probability that GPr is connected.1 While Rel(G) is
the most relevant reliability measure for many applications,
such as distributed computer network performance [21], or
satellite formation planning in our case, it is often difficult to
work with as it lacks monotonicity. That is, the connectedness
of a subgraph of GPr does not imply the connectedness of
GPr itself, and the disconnectedness of GPr does not imply
the disconnectedness of all of its subgraphs. For this reason,
residual connectedness is less well-studied than its monotonic
counterpart, the all-terminal reliability of G, RelA(G), which
is the probability that all vertices operate (no vertex failure)
and GPr is connected. We denote by Fail(G) and FailA(G)
the values 1− Rel(G) and 1− RelA(G), respectively.

Letting C denote the collection of connected subgraphs of
G and S the collection of connected spanning subgraphs of
G, we have Rel(G) =

∑
H∈C P(GPr = H) and RelA(G) =∑

H∈S P(GPr = H). Since C contains S, it follows that
Rel(G) ≥ RelA(G). Determining either of these quantities
for an arbitrary graph G is known to be ♯P-complete [19],
[22]. The same is true of 2-terminal reliability, the probability
two specified vertices are joined by a path in GPr, even for

1Residual connectedness was originally defined for graphs with perfectly
reliable edges in [18] and [19], but is adapted to this more general case in [20].



unit-disk graphs [9] (and thus for unit-ball graphs as well). For
this reason, a number of tractable upper and lower bounds have
been determined. As a simple example, if pe = p for each edge
e in G, and all vertices are reliable, then Rel(G) = RelA(G),
which is bounded below by pn−1(1−p)m−n+1N , where m =
|E| and N is the number of spanning trees in G (which can
be calculated using Kirchhoff’s Matrix-Tree Theorem [23]).
On the other hand, if C is an edge-cut in G containing c
edges, then FailA(G) ≥ (1 − p)c; a spanning subgraph of G
cannot be connected if every edge in an edge-cut fails. While
it is easier to produce upper and lower bounds for all-terminal
reliability than for residual connectedness, both measures can
be estimated using Monte Carlo simulation (see Section IV).

With this terminology at hand, we are able to state the main
goal of this paper, which is to provide an algorithm to find
the optimal location to add or move a vertex in a unit-ball
graph in order to maximize Rel(G) or RelA(G). Our solution
consists of: i) providing an algorithm, which has O(n3 log n)
complexity, to enumerate all of the possible graphs G+v for a
unit-ball graph G, described in Section III, and ii) comparing
the reliability of these graphs using Monte Carlo methods,
described in Section IV. In order to move a vertex, we simply
perform steps i and ii on each of the subgraphs obtained by
deleting a vertex from G.

III. ADDITION OF A VERTEX TO A GEOMETRIC GRAPH

As unit-disk graphs and unit-ball graphs are often used to
model communication networks between objects, it is natural
to ask how a graph parameter µ varies as new vertices (and
corresponding edges) are added. From the answer to this prob-
lem one can deduce how µ varies when a vertex in a geometric
graph G is repositioned. If an efficient means of calculating or
estimating µ(G) is known, one can begin by making a list of
all possible neighborhoods for a new vertex and then evaluate
µ on each (abstract) graph obtained by adding a vertex with
one of the neighborhoods listed. In Section III-A, we provide
an algorithm to enumerate all of the possible neighborhoods
for a new vertex. While the number of possible neighborhoods
for a new vertex in an abstract n-vertex graph is exponential,
the number of possible neighborhoods in a geometric graph
is not. Our algorithm runs in O(n2 log n) or O(n3 log n)
time, for R2 and R3 respectively, and these bounds can be
improved with parameterized complexity. In Section III-B,
we determine a point vN , for each possible neighborhood N ,
which minimizes the maximum distance to a vertex in N . This
provides a list of geometric graphs which can be obtained by
adding a vertex to G. We also discuss the overall complexity
of the algorithm, how it can be used to reposition a vertex in
G, and how it might be extended.

A. Enumerating all possible neighborhoods for a new vertex
added to a geometric graph

The problem of enumerating the neighborhoods that a new
vertex can have if added to a unit-disk graph is equivalent
to enumerating the non-empty intersections of a set of circles
in R2, or spheres in R3 for a unit-ball graph. It is shown

θenter

θexit

p

q

Fig. 1. A circle of radius 1 revolves in a counterclockwise motion around a
fixed point p on its boundary in an angular sweep. A point q enters and exits
the circle at the angles θenter and θexit, respectively (see Algorithm 1).

in [4] that n circles partition the plane into at most n2 −
n+ 2 regions, and that n spheres partition space into at most
n(n2−3n+8)/3 regions. In this section, we provide a method
to enumerate these regions. The 2-dimensional case is solved
by Algorithms 1, 2, and 3, while the generalization of these
algorithms to three dimensions is described in what follows.

Algorithm 1 Determine the interval, in radians, during which
a point q is contained in a circle of radius 1 during an angular
sweep around p

Input: two points p = (xp, yp), q = (xq, yq) ∈ R2

Output: interval (θenter, θexit) during which q is contained in
the circle of radius 1 sweeping around p

1: function ANGSWEEPINTERVAL(p, q)
2: if dist(p, q) > 2 then
3: return “No interval.”
4: end if
5: x ← xq − xp

6: y ← yq − yp
7: A ← arctan (y/|x|)
8: B ← arccos (

√
x2 + y2/2)

9: if x < 0 then
10: θenter ← π − (A+B)
11: θexit ← π − (A−B)
12: else
13: θenter ← A−B
14: θexit ← A+B
15: end if
16: return (θenter, θexit)
17: end function

Let p1, . . . , pn denote the centers of a set of unit circles
in R2 or a set of unit balls in R3. We assume the points to
be generic, in that no three points lie on the boundary of a
unit circle (in R2), and no four points lie on a unit ball (in
R3). Here, we summarize our algorithm to list the regions into
which these balls partition R2 or R3.

Algorithm 3, ENUMERATEREGIONS, takes as input the set



Algorithm 2 Obtain sets of points from angular sweep inter-
vals
Input: a list L of pairs (q, (θenter, θexit)), where q is a point

and θenter, θexit are between −π/2 and π/2 radians
Output: a list of sets of vertices corresponding to overlapping

intervals

1: function FINDSETS(L)
2: Endpts ← []
3: for (q, (θenter, θexit)) in L do
4: append (θenter, q, type = “enter”) to L
5: append (θexit, q, type = “exit”) to L
6: end for
7: sort Endpts by first coordinate
8: Current Set ← set of points with θexit < θenter
9: Sets ← []

10: for (θ, q, type) in Endpts do
11: if type is “exit” then
12: remove q from Current Set
13: append Current Set with q appended to Sets
14: end if
15: if type is “enter” then
16: append q to Current Set
17: append Current Set to Sets
18: end if
19: end for
20: if Sets = [] then
21: return [∅]
22: end if
23: return Sets
24: end function

of points V = {p1, . . . , pn} and performs an angular sweep
around each point pi to determine the regions into which the
circles or spheres partition space. The term angular, or radial,
sweep is commonly used in 2-dimensional computational
geometry to describe the effect of sweeping a circle of fixed
radius around a point and recording other points as they enter
and exit the circle (see Figure 1). The 2-dimensional version of
our algorithm is based on such a technique, described in [24].
The angular sweep which we perform in three dimensions
appears to be novel. The idea is as follows: given two points
pi, pj ∈ R3 of distance no more than 2 apart, we choose a
vector v⃗0 which is perpendicular to the line segment joining pi
and pj and which starts from the center c of this line segment.
Associated to v⃗0 is a unit ball for which i) both pi and pj lie
on the boundary, and ii) v⃗0 passes through the center of the
ball. We then “rotate” this vector, and the associated unit ball,
in a full revolution around the line segment joining pi and pj .
Each time a point pk enters or exits the ball during the sweep,
we record the angle from the vector associated to this ball
(passing from c through the ball’s center) to v⃗0. As such, we
enumerate the unit balls which contain pi, pj , and one other
point on their boundaries, and we keep track of the points
which lie inside these balls.

Algorithm 3 Enumerate regions created by circles in R2

Input: points p1, . . . , pn in R2

Output: list of regions into which circles of radius 1 centered
at p1, . . . , pn partition R2. Each non-empty region is
denoted by the set of points whose circles define it.

1: function ENUMERATEREGIONS([p1, . . . , pn])
2: Regions ← [∅]
3: for i ∈ {1, . . . , n} do
4: L ← []
5: for j ∈ {1, . . . , n} \ {i} do
6: if dist(pi, pj) < 2 then
7: append ANGSWEEPINTERVAL(pi, pj) to L
8: end if
9: end for

10: for R ∈ FINDSETS(L) do
11: append R and {pi} ∪R to Regions
12: remove the last element from R
13: append R and {pi} ∪R to Regions
14: end for
15: end for
16: remove duplicates from Regions
17: return Regions
18: end function

We now revisit the problem in two dimensions and provide
additional details. In two dimensions, we perform an angular
sweep with a unit circle around each point pi to determine
the sets of points which are contained in a unit circle with pi
on its boundary. In three dimensions, we perform an angular
sweep with a unit ball around each line segment of length at
most 2 joining a pair of points pi, pj to determine the sets of
points which are contained in a unit ball with pi and pj on
its boundary. In order to determine these sets, we first make
a list of the angles of rotation at which each point within
sufficient distance enters and exits the circle or ball during the
sweep using Algorithm 1, ANGSWEEPINTERVAL. Recording
these angles is most easily done after a transformation which
puts pi ∈ R2 at the origin, or which puts pipj on the y-
axis and c at the origin in R3 (angles of rotation are taken
with respect to the positive x-axis in both cases). We then
use Algorithm 2, FINDSETS, to obtain a list of sets of points
which are contained in the unit circle or sphere during the
sweep at each moment that a point enters or exits.

In two dimensions, suppose that S ⊂ V is the set of points
contained in the interior of a unit circle with points pi and pj
on its boundary. By shifting the circle slightly, one can obtain a
unit circle which contains S ∪ {pi}, S ∪ {pj}, or S ∪ {pi, pj}
in its interior. The existence of a circle containing a given
set of points in its interior implies the existence of a region
in R2 cut out by the unit circles around those points. Thus,
for each set S of points returned by FINDSETS, we obtain
four regions, corresponding to S, S ∪ {pi}, S ∪ {pj}, and
S ∪ {pi, pj}. Similarly, in three dimensions, a unit ball with



pi, pj , and pk on its boundary and the subset S of V in its
interior can be shifted so that S and any of the eight subsets
of {pi, pj , pk} are in its interior; thus, we obtain all eight sets
as regions formed by an intersection of unit balls around the
points in question.

Having performed angular sweeps around all points in R2

(or pairs of points in R3), we thus obtain a list of regions
formed by the intersections of the set of unit circles or spheres
centered at these points. To show that this list is complete, we
observe that the existence of a region R implies the existence
of a circle or sphere of radius 1 containing all of the points
in the subset S of V which defines R, and none in V \S. We
can shift such a circle until it has two points on its boundary,
or a sphere until it has three; these points may or may not
be contained in S. By again shifting the circle or sphere
slightly, we can add any subset of the two or three points
on its boundary to its interior. Thus, in at least one sweep
around a point or pair of points on the boundary of a circle
or sphere, we obtain S as one of the four or eight sets listed.

B. Adding or moving vertices in a geometric graph

Let G be a geometric graph on n vertices. Each region
R returned by Algorithm 3 corresponds to a subset N of
vertices which could be the neighbors of a new vertex. We
have proposed this algorithm as a means of optimizing a graph
parameter, such as network reliability, by adding or moving a
single node. From a list of all possible neighborhoods that a
new vertex could have, one directly obtains a list of (abstract)
graphs of which to check the reliability. In order to construct
a geometric graph corresponding to the optimal new graph,
however, we require a specific point to place a new vertex.

A natural candidate for this point is the center of the smallest
circle or sphere enclosing the points in N . This is also the
point which minimizes the maximum distance to a point in
N . Shamos and Hoey describe a method to determine the
smallest enclosing circle for k points in O(k log k) time [25],
which was improved to an O(k) algorithm in [26]. In three
dimensions, a randomized method is presented in [5], which
solves the problem in expected O(k) time, and Gärtner [6],
[7] provides methods which are not linear, but are efficient
in practice. For our application to reliability, we only need
to apply such a method once in order to place the vertex
which yields the most reliable unit-ball graph, which we
find using Monte Carlo simulations of abstract graphs. For
other applications, one can produce locations for new vertices
corresponding to each possible neighborhood returned by
Algorithm 3 in O(n3) or O(n4) time, depending on whether G
lives in R2 or R3. However, we note that this is an overestimate
in many cases. In these types of geometric graphs, vertex
degrees do not tend to grow linearly with n. If we let ∆ be
the largest number of nodes contained in any ball of radius 2,
then i) the number of regions formed by the unit balls centered
at the nodes of G can be no larger than 2n∆ in R2 or 2n2∆
in R3, and ii) the number of nodes defining any given region
is at most ∆. The former observation follows from the fact
that each ball intersects at most ∆ others and can be shifted

until it has one or two points on its boundary, in R2 or R3,
respectively. Thus, the time complexity can be expressed as
O(n∆2) or O(n2∆2), depending on the dimension.

We have presented here a method to determine a list of
locations which describe all of the possible geometric graphs
obtainable by adding a vertex to G. Further, we place this
new vertex in the location which minimizes the maximum
distance to one of its neighbors. This choice is a reasonable
one for many applications, but we note that this is not the only
location one could place a vertex in a region. We can also use
this method to move a vertex v in G by applying Algorithm 3
to G− v. We will revisit the significance of this in Section V.

IV. NETWORK RELIABILITY USING A MONTE CARLO
APPROACH

In this section, we apply the algorithm descibed in Sec-
tion III to network reliability problems on a geometric graph
G. We recall the residual connectivity Rel(G) and the all-
terminal reliability RelA(G), described in Section II. Both
of these measures are ♯P-complete to compute, and so it is
common to estimate them using Monte Carlo simulation. We
consider a crude Monte Carlo scheme where, at each trial, we
generate a probabilistic graph GPr and check if it is connected.
More sophisticated Monte Carlo algorithms are available in
the literature (see [20], [27]–[30]). These are “homogeneous”
Monte Carlo schemes, meaning that the relative error is
bounded, which perform well on highly reliable graphs. For
our application and many others, the network reliability is
bounded above by a constant depending on the reliability of
the individual nodes and edges and on the density of the graph.
Thus, the relative error is also bounded in these applications,
determining the maximum number of crude Monte Carlo
simulations required to estimate the reliability. This allows one
to efficiently maximize the reliability of a geometric graph via
node placement using a crude Monte Carlo scheme.

The “Zero-One Estimator Theorem” of Karp and Luby [29]
determines the number of trials necessary to obtain an estimate
to within an ϵ factor of Fail(G) with probability 1− δ. Let Y
denote the average value of N Monte Carlo simulations for
Fail(G).

Lemma 1 (Zero-One Estimator Theorem). Let G be a graph,
let µ be either Fail(G) or FailA(G), and let ϵ, δ > 0 with
ϵ ≤ 1− µ. If N > 4.5 ln (2/δ)

µϵ2 , then

Pr

(
|Y − µ|

µ
< ϵ

)
≥ 1− δ.

In order to make sense of Lemma 1, we require a lower
bound on Fail(G) or FailA(G). We note that, if each edge in
an edge-cut C of G fails, and if the endpoints of the edges in
C are operational, then GPr is disconnected. Thus, Fail(G) ≥∏

e∈C(1 − pe)
∏

v∈V (C)(1 − pv), where V (C) denotes the
set of vertices incident to an edge in C. While a graph can
have exponentially many edge-cuts, an edge-cut of minimum
cardinality can be found in O(n3) time [31], [32]. This does
not change the order of the complexity of adding or moving a



vertex to maximize the reliability of a unit-ball graph, for our
algorithm in Section III-A runs in O(n3 log n) time. Although
it is not always the case, an edge-cut with a small number of
edges is typically more likely to fail than a larger one, giving
a better lower bound on Fail(G). Since FailA(G) ≥ Fail(G),
it suffices to conduct

N =
4.5 ln (2/δ)

cϵ2
, (1)

Monte Carlo trials to produce an estimate of Fail(G) or
FailA(G) with relative error at most ϵ with probability 1− δ,
where c =

∏
e∈C(1− pe)

∏
v∈V (C)(1− pv).

In theory, as c tends to zero, the number of trials needed
to estimate Fail(G) or FailA(G) with a fixed relative error ϵ
grows large. However, for our applications, a small absolute
error suffices for small Fail(G). For instance, if we would only
like to know whether or not Rel(G) > .95, and if Monte Carlo
simulations estimate Rel(G) to be .96, then a relative error
bound of .01 corresponds to an absolute error bound of .0004,
which is much smaller needed to compare these numbers.

In our application to satellite formation planning in Sec-
tion V, we compare the reliabilities of various graphs. If the
difference between their reliabilities is large, we can determine
which graph is most reliable using a large value of ϵ. If only
a few graphs are good candidates for being most reliable,
then we can increase efficiency by only applying Monte Carlo
schemes with small values of ϵ to these graphs.

V. APPLICATION TO AUTONOMOUS SATELLITE SWARMS

In this section, we describe an application of our algo-
rithm to satellite swarms and autonomous formation plan-
ning. Swarms of small satellites which cooperate to perform
tasks are likely to become commonplace in future space
missions [33]–[35].

Consider a swarm of satellites, each able to communicate
with other satellites within a certain distance r. The locations
of the satellites at a given moment, with respect to a reference
satellite and scaled down by a factor of r, induce a unit-ball
graph which represents the communication network. Com-
munication failures or hardware reliability issues may render
communication links, or the satellites themselves, inoperable.
It is thus important to optimize the reliability of unit-ball
graphs in the event of random failures.

We recall the previously discussed reliability measures
Rel(G) and RelA(G). The former represents the general case,
in which both satellites and communication links may fail,
while the latter represents the simpler case in which satellites
are perfectly reliable, and only the communication links are
subject to failure. Given that the swarm is to accomplish some
task, such as distributed imaging or in-space assembly of an
object, we assume that the positions of at least some of the
satellites in the formation are fixed. The algorithm proposed
in Section III and the Monte Carlo methods in Section IV
provide a means of placing or moving redundant satellites in
the formation in order to maximize either Rel(G) or RelA(G).

In Figure 2, an example formation is depicted by a unit-disk
graph. Of course, satellite formations induce 3-dimensional

(a) Possible (maximal) neighborhoods

(b) A most reliable candidate

(c) Most reliable location to move a vertex

Fig. 2. Adding a vertex to a unit-disk graph in order to maximize reliability.

unit-ball graphs, but we depict one in 2D for simplicity;
the same discussion holds in generality. The black vertices
correspond to satellites whose locations are fixed for a certain
task. The grey circle around each black satellite is of commu-
nication radius r. We assume that all satellites are perfectly
reliable and that each edge has a 99% probability of operation.

Suppose that there is an eighth satellite in the formation,



which is to be placed to maximize the reliability of the net-
work. Using Algorithm 3, we can enumerate all of the possible
neighborhoods that this new vertex can have. In Figure 2a,
the neighborhoods of the red vertices are the neighborhoods
returned by Algorithm 3 which are maximal with respect to
subset inclusion. The locations of the red vertices are the
centers of the smallest enclosing circles for these maximal
neighborhoods. Using the methods from Section IV, we can
determine the choice which maximizes the reliability, depicted
in Figure 2b.

If H denotes the graph induced by the black vertices in
Figure 2, and the probabilities of operation are as before,
it is not hard to calculate that RelA(H) = .996. Thus
FailA(G) < .067 for each graph G induced by H and a single
red vertex in Figure 2a. Choosing ϵ = .05 and δ = .01 and
applying Lemma 1 gives, with 99% probability, an estimate
of each failure probability FailA(G) to within .34% of the
true value in at most 8, 650 trials. The top two red vertices
in Figure 2a each induce graphs with estimated reliability
about 99.8%, while the bottom four red vertices induce graphs
with estimated reliability about 96.7%. The difference between
these values, compared with the bound on the error of our
estimate, shows that with 99% confidence, the most reliable
choices for the new vertex are the top two red vertices.

Our methods can be used to determine all of the unit-ball
graphs obtainable by repositioning a single vertex. Indeed, one
can do so by applying Algorithm 3 ENUMERATEREGIONS to
each graph obtained by deleting a vertex and its incident edges
from G and finding the points which minimize the maximum
distance to a vertex in each region. In our application, this can
be parallelized by having each satellite v perform Algorithm 3
and the Monte Carlo simulations described in Section IV, on
the geometric graph G − v. By parallelizing, the swarm can
determine in O(n3 log n) time the optimal location to move a
single satellite in order to maximize the reliability.

Moving the upper-leftmost black vertex to the same red
position (see Figure 2c) is also the best place to move an
existing vertex in H in order to maximize the all-terminal
reliability. The reliability of the resulting cycle is about 99.8%,
where as the optimal position to move any other vertex in H
results in a graph which is about 96.2% reliable using the
same values of ϵ and δ for the Monte Carlo simulations.

In general, adding nodes to a unit disk graph within a
bounded region adds connections and improves reliability. We
compare our method to a random addition of new nodes to
a random unit disk graph. First, we compare the reliability
of a random unit disk graph on n nodes, conditioned on
connectedness, to the reliability of the graph obtained by
repositioning one node (selected uniformly at random) using
our algorithm to optimize reliability. We take a uniform
random geometric graph in a square of size 2.5 × 2.5. For
the analysis, we let p = 90%, ϵ = .2, δ = .05, and we let n
range from 6 to 20. We average over one hundred trials. The
results are shown in Figure 3. For example, repositioning one
randomly selected node in a unit disk graph on ten nodes is
more effective than doubling the size of the swarm. Using

Fig. 3. A comparison of the reliability of random unit disk graphs (conditioned
on connectedness) to the same graphs where one node has been repositioned
for improved reliability. The standard deviation is also depicted.

our algorithm to place a single new vertex in an optimal
position improves the network reliability significantly. One
can achieve the same improvement in reliability by adding
multiple new vertices uniformly at random within the convex
hull of the graph. Based on one hundred simulations, we found
that more than four random vertices were needed to match
the reliability of a single optimal vertex added to a 10-vertex
random geometric graph with the above parameters.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of altering a
communication network by moving a single node in order
to maximize network reliability. We did so in the context of
formation planning of satellite swarms, which we represent by
unit-ball graphs. Although there are infinitely many locations
to place a new node in space, there are only finitely many
possible changes to the network; we provided an algorithm
to determine all possible changes in time O(n2 log n) or
O(n3 log n), for graphs in 2- or 3-dimensional Euclidean
space, respectively. This algorithm was used alongside existing
methods from the literature to find the precise location to move
a node which minimizes the maximum distance to one of
its neighbors, and to compare the reliability of the possible
resulting networks using Monte Carlo simulation.

It is reasonable to ask further about the movement of two
or more vertices in a unit-ball graph, instead of just one. Our
method can be used to add or redirect satellites one by one,
while other satellites remain static. However, this is not always
optimal. Consider a long path in the shape of an arc, such as
the one induced by the black vertices in the unit-disk graph
depicted in Figure 4. With two additional vertices, shown in
red, one can connect the two endpoints of this path. The
resulting cycle has a higher all-terminal reliability than any
of the graphs obtainable by adding vertices one at a time to
maximize the reliability at each step. New methods will be



Fig. 4. A unit-disk graph (induced by the black vertices) for which adding two
(red) vertices simultaneously results in a more reliable graph than iteratively
maximizing the reliability by adding vertices one at a time.

required to address these types of problems when multiple
satellites are in motion simultaneously.
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