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Abstract. The neural symbolic regression (NSR) literature has thus far
been hindered by an over-reliance on individual, ad hoc evaluation met-
rics, producing seemingly favorable performance for the method using it
but making comparison between methods difficult. Here we compare the
performance of several NSR methods using diverse metrics reported in
the literature, and some of our own devising. We show that reliance on
a single metric can hide an NSR method’s shortcomings, causing per-
formance rankings between methods to change as the evaluation metric
changes. We further show that metrics which consider the structure of
equations generated after training can help reveal these shortcomings,
and suggest ways to correct for them. Given our results, we suggest best
practices on what metrics to use to best advance this new field.
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1 Introduction

Classical regression encompasses a range of methods that fit an equation to given
data. In classical regression, the data and an equation skeleton is provided, to
which coefficients are then fit. The limitation of this approach is the need to
formulate an appropriate equation, which requires manual analysis of the data
to determine an appropriate formal representation. One solution to this issue
is symbolic regression (SR) [14]. SR searches over the space of possible equa-
tions to explain a given data set, removing the need for manual formulation of
the equation and thus avoiding human bias. Traditionally, SR is conducted with
genetic programming (GP) [2,12–14,26,27,35]. Advances in GPSR were hard to
discern due to a lack of common metrics and benchmark equations. Through-
out its history since the 19901990ss, a variety of metrics and best practices for
GPSR have been studied [1,16,17]. However, it was not until 2012 that the lack
of standardization began to be discussed and benchmarks proposed [15,19,36].
This delay in recognizing the problem a lack of standardized metrics and bench-
marks creates hindered the progress of GPSR, and to date there still exist GPSR
methods that rely on non-standard metrics and toy datasets that are not a part
of established benchmarks.
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Fig. 1. a) Genetic Programming Symbolic Regression. Each instance is trained on a
dataset of (x,y) values to describe a separate equation. b) Neural Symbolic Regression.
A network is trained on multiple datasets of (x,y) values that describe a variety of
equations. c) NSR methods’ use of different metrics obscures how well networks perform
in comparison to each other, so a final ranking of the best performing method is unclear.

Regardless of the speed of progress in evolutionary algorithm-based SR,
it generally remains the standard for SR. However, such gradient-free search
approaches require considerable computation, and they only fit one set of equa-
tions to one data set, rather than learning the more general problem of how to
transform different data sets into different equations.

Deep learning methods offer a potential approach for achieving this gen-
erality. AI models such as large language models [7,25,34] show promise for
this generalized form of SR by transforming data into equations [3,4,11,32,33].
This is possible because an equation can be considered a statement composed
in the language of mathematical operators and variables. Indeed, recent litera-
ture shows progress in using transformers [4,11,32,33], a type of large language
model, to generate an equation when fed a given data set.

Currently, however, NSR studies use ad hoc metrics on non-standardized
benchmark sets, making comparison across methods difficult (Fig. 1c). This is
similar to the issues faced by GPSR, which we seek to preemptively avoid. Sim-
ilar studies have been done in other fields of machine learning in order to help
ensure trustworthy benchmarks and comparisons between methods [5]. In order
to better compare across methods, here we compare NSR methods (Table 1)
using some metrics drawn from the literature and some created by us, and find
that this reveals limitations in these current methods that are hidden when
only one metric is used. Given our results, we suggest best practices on what
benchmark equations and metrics to use to best advance this new field.
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2 Methods

Five NSR methods have been reported in the literature to date [3,4,11,32,33].
Each method trains some kind of differentiable network to transform multi-
ple data sets into multiple equations such that, post training, it can transform
unseen data sets into equations accurately reflecting that data. This requires a
set of training equations and a set of testing equations, and data generated from
both. As GPSR is specialized per equation instead of being generalized for any
equation, comparison between neural and GPSR methods is unfair given GPSR
will always be more accurate than NSR. As such, evolutionary methods are not
considered in this paper.

First, we define post generation coefficient fitting (PEGCF) and the role it
plays in NSR. Second, benchmark equations in NSR are discussed. Third, the
variety of metrics implimented are defined and analyzed. Fourth, details of the
NSR methods and are outlined. Finally, we define the control equations that are
used for comparison against NSR generated equations.

2.1 Post Equation Generation Coefficient Fitting

It has been found that training a transformer to generate coefficients and equa-
tion structure simultaneously is difficult, so some of these models [4,32] are only
trained to generate equation structure, and rely on coefficient fitting methods
[6,8,10,28] post inference. Even the NSR methods that do predict coefficients
during training [11,33] still use PEGCF during and after training to further
refine the coefficients in generated equations.

In theory, a trained model could learn to ignore data and instead always
generate the same, sufficiently long equation that could be fit to various new
data sets by PEGCF. Thus, as an initial demonstration of the utility of employ-
ing multiple NSR metrics, we reran some of the NSR methods reported in the
literature [4,32,33] but denied them access to PEGCF. Target equations were
generated with coefficients of 1, and coefficients in generated equations were
replaced with 1; this allows NSR methods to not have to guess or fit coef-
ficients at all. Numeric metrics reveal that several of these methods are overly
reliant on PEGCF as the PEGCF-denied methods suffered deteriorations against
these metrics; a symbolic metric—equation length—reveals how this over reliance
might be manifesting (Sect. 3.1).

2.2 Benchmarks

In NSR there is a lack of commonly-agreed upon benchmark equations. Though
some methods [4,33] test on benchmark equations such as the Nguyen equations
[31], on their own, these equations tend to lack diversity and complexity. Thus,
we propose a set of additional benchmark equations with increasing diversity
and complexity (AppendixA).
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2.3 Metrics

Choosing appropriate metrics for NSR is complicated by the fact that, unlike
most forms of supervised learning, SR investigators face a dilemma between
using numeric or symbolic metrics. The former rewards for prediction accuracy
while the latter rewards for structural accuracy.

Numeric Metrics. Numeric evaluation metrics measure, in different ways, the
distance between the dependent variable values of a given data set (Y ) and
dependent variable values predicted by the equation generated by a model (Ŷ )
when provided with independent variable values X. Use of such metrics implies
the authors are interested in the predictive power of generated equations, rather
than their form.

Biggio [4] uses numpy’s isclose method. Here, we use isclose with the
specifications reported in [4]: an absolute tolerance of 0.001, relative tolerance
of 0.05, and a threshold of 0.95. This means that a generated equation that
differs from the target equation at less than 5% of points is considered accurate.
This metric is reported as the percentage of equations that are accurate. This
metric has the advantage of being able to deal with values of ±∞ and NaN,
however the multiple layers of error allowance do slightly obscure the model’s
true performance.

We also implement Valipour’s [32] “protected” normalized mean square error
(NMSE)—a different numeric metric—given by

NMSE(Y, Ŷ ) =
1
n

n∑

i=1

(yi − ŷi)2

‖yi + ε‖2 , (1)

where ε = 10−5 [32] is a small factor used to avoid divide by zero errors. Mean
squared error is a common metric in general, and using normalization keeps
any extreme values from contributing overly much to the individual error. One
disadvantage to this metric is that it ranges over [0,+∞]. This can cause large
outliers to have an outsized effect on the final mean NMSE, as it can take many
perfect scores of 0 to balance one very large score.

Finally, we employ several versions of the coefficient of determination, R2 [9].
Interpreting raw R2 can be challenging, as outliers can have a significant effect
on the final average. There are various ways to compensate for this. First is the
mean raw R2 score, as used in Vastl [33], given by

R2(Y, Ŷ ) = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

. (2)

This shares a similar disadvantage to NMSE: perfect accuracy results in a value
of 1.0, but poor accuracy can incur infinitely negative values. To alleviate the
outsized effect outliers can have, median R2 can be used. Alternately to median,
R2 over a threshold has been reported in the literature as an accuracy metric,
but there is no consensus on what threshold to use: Biggio [4] used a threshold
of 0.95, Kamienny [11] used 0.99, and La Cava [15] used 0.999.
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Symbolic Metrics. Another version of accuracy is to consider the structural
distance between a generated equation and a known target equation. Usage of
symbolic metrics implies the authors wish to create a method that can ‘explain’
a data set, in mathematical form, to a human reader. To compare two equations
symbolically, they must first be simplified, as NSR models can generate equations
with duplicate terms during inference. Due to how symbolic comparison of two
equations works, it is necessary to group matching terms and ensure that the
equations are always written in the same order (e.g. a polynomial is always
written highest to lowest order first). To do this we employ sympy’s simplify
method. This simplifies an equation and allows it to be accessed in string or tree
form. This is important as some symbolic metrics require conversion of a string
into a tokenized representation in order to calculate error, while other methods
require the tree form of an equation.

Cross-entropy is commonly used for symbolic loss during training, and can
be similarly used as an evaluation metric for equations generated by a trained
model. To use cross-entropy, equations are transformed into a tokenized repre-
sentation, and then processed using pytorch’s CrossEntropyLoss.

La Cava [15] and Petersen [24] used another symbolic metric: exact symbolic
equivalence. For this metric, first, target and predicted equations are compared in
their tree representations (f(x), f̂(x)) to determine whether they are the same
tree: simplify(f - f hat) == 0. This metric then reports the proportion of
exact matches across the training equations or testing equations. La Cava [15]
used a slightly more lenient definition of symbolic equivalence that includes
equations that differ by a constant or are proportional. It is worth noting that
[15,24] report evolutionary SR methods; exact equivalence has not yet been
used as a metric in NSR. For the sake of parity with other symbolic metrics (the
lower the metric the better the method is performing), we here report symbolic
inequivalence- the proportion of equations that do not exactly match across
training or testing equations.

The unforgiving nature of exact symbolic equivalence can foil comparisons
between partially-working NSR methods because they all achieve a score of zero.
So, the final symbolic metric we consider is tree edit distance (TED), a symbolic
metric not yet used by any NSR methods. TED algorithms [20–23,37] calculate
how many edits it would take to transform one equation’s tree representation into
another’s. Ordered and unordered TED algorithms are possible. In an ordered
algorithm, the order in which the nodes appear in the tree matters, so if a term
appears in both equations, but different places in the tree, this is considered a
necessary edit. Unordered TED does not make this distinction: so long as the
term is present in both trees it is correct and does not require an edit. Here,
we use APTED [23], an ordered TED. We report this TED normalized by the
number of nodes in the target equation tree because generated equations will
require, on average, more edits to transform them into longer target equations.
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2.4 NSR Methods

We now summarize the methods considered in this study. Biggio 2021 [4],
Valipour 2021 [32], and Vastl 2022 [33] are all implemented. Biggio 2020 [3]
and Kamienny 2022 [11] were not implemented in this study due to a lack of
models provided by the authors.

Biggio 2020. [3] implement a fully-convolutional model with gated recurrent
units, residual connections and attention. The model uses cross-entropy loss for
training and is evaluated on root mean squared error. It is trained on equations
generated by their own equation generation program, and is tested on a combina-
tion of equations seen during training, and new equations, still produced by their
equation generator. Despite significant effort we were unable to reimplement this
method, so it is not included in the cross-method comparison below.

Biggio 2021. [4] use a set transformer encoder with a standard transformer
decoder model, trained on cross-entropy loss using millions of equations from
their equation generator. The trained model is evaluated by their own numerical
metric using np.isclose (detailed below) on a combination of the AI Feyn-
man equations [30], Nguyen equations [31], and their own generator-produced
equations unseen during training. They provided a pretrained model to the com-
munity, which we use below.

Valipour 2021. [32] use a two transformer model, first passing data through
a transformer to produce an order-invariant representation then used to train a
second transformer that generates equations. The entire model is trained using
cross-entropy loss and tested on NMSE. They use their own equation generator
to generate training and testing equations. For our testing, we trained their
model on equations generated by their generator.

Kamienny 2022. [11] use a fully connected feedforward network to reduce
data dimensionality and then feed the lower dimensional data to the trans-
former model to generate equations from them. Their model predicts equations
and coefficients, the latter of which are then refined using a coefficient fitter.
The model is trained on cross-entropy loss and tested on both the coefficient of
determination (R2) and accuracy to tolerance.

They use their own equation generator for generating training and part of
their testing equations (the rest come from the Feynman [30] and ODE-Strogatz
[29] equations). They do not provide their model (code or pretrained), and as
such we were unable to implement their method.

Vastl 2022. [33] use a transformer architecture with a cross-attention encoder
and self-attention decoder. Their model uses cross-entropy and mean squared
error losses for equation structure and coefficients respectively during training,
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and is tested on both R2 and relative error. They generate their own training
equations, and their testing equations are a combination of their training equa-
tions and benchmark equations drawn from the SR literature. They provide a
pretrained model, which we use below.

In addition, we considered but did not ultimately test the NSR methods by
Biggio [3] and Kamienny [11] as we were unable to implement either method
and thus do not report results from them.

2.5 Control Equations

If PEGCF can fit randomly or systematically generated equations to a data
set with similar success as it does for an NSR-generated equation, this would
indicate that NSR method is not generating structurally correct equations. Thus,
we compared NSR-generated equations against three types of control equations:
polynomials, Fourier series, and randomly-generated equations. All equations
were designed with 10◦C of freedom in order to allow sufficient ability to fit to
data. The polynomials are

f(x) =
10∑

i=0

cix
i, (3)

where ci are the fit coefficients. The Fourier series used was

f(x) = c0 +
5∑

i=1

ci,1 ∗ sin(ix + ci,2). (4)

Lastly, the random equations are generated using Valipour’s [32] tree based
equation generation with access to the mathematical operations [+, ∗, \, sin,
cos, √, exp, log] and a maximum tree depth of 9.

3 Results

We use a variety of numeric and symbolic metrics to analyze the predictive
and structural accuracies of equations generated by various methods. Methods
that provide pre-trained networks use those saved weights for evaluation. Other
methods that do not provide such are trained from scratch using the network
architecture provided.1 All methods’ networks are trained on their own generated
equations and are evaluated on our benchmark equations (AppendixA).

3.1 Numeric Metrics

Cross-Method Comparison. Results obtained against the numeric metrics
are shown in columns 2–4 of Table 1. Biggio [4], with the isclose metric, out-
performs Vastl [33] with this metric (p � 0.001). No significant performance
advantage over Valipour [32] was detected (p > 0.05) with this metric. Similarly,
although it appears that Valipour [32] performs best using their NMSE metric,
there is no significant difference compared to other NSR methods using NMSE.
Overall, Table 1 shows that the relative ranking of NSR methods is dependent
on the evaluation metric used.
1 https://github.com/mec-lab/metric message.

https://github.com/mec-lab/metric_message
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Table 1. Comparison of testing metrics for NSR methods. Bold values indicate that
it was the metric used in that method. Bracketed values denote the 95% confidence
interval for the metric. Mann-Whitney U [18] tests for significance were performed
within each column. Bonferroni correction was employed to compensate for the 12
pairwise comparisons. In the case of NMSE and R2, the median is reported instead of
the mean due to unbounded ranges.

Reference NMSE R2 > 0.99 R2 np.isclose Cross Symb Tree Edit

entropy Equiv Dist.Prop

Biggio et 0.20 0.34 0.95 0.24 *** 0.60 0.18 1.01

al. (2021) (0.16, (0.33, (0.93, (0.23, (0.60, (0.17, (0.99,

0.25) 0.36) 0.96) 0.26) 0.60) 0.19) 1.02)

Valipour et 0.03 0.37 0.91 0.07 1.96 0.07 1.05

al. (2021) (0.003, (0.19, (0.29, (0.01, (1.56, (0.00, (0.83,

0.07) 0.59) 0.99) 0.31) 2.30) 0.30) 1.18)

Vastl et 0.72 0.15 0.38 0.13 0.48 0.05 1.69

al. (2022) (0.64, (0.31, (0.18, (0.12, (0.46, (0.05, (1.64,

0.84) 0.47) 0.20) 0.15) 0.49) 0.07) 1.75)

With and Without PEGCF. Here we compare NSR methods with and with-
out PEGCF, providing insight into how much data-to-equation effort is per-
formed by skeleton generation (NSR) and coefficient fitting (PEGCF). We found
that, when denied access to PEGCF, Biggio [4] and Valipour [32] suffered sig-
nificant deterioration according to two numerical metrics during testing. This is
similar to Kamienny [11], which reports a better R2 value when PEGCF is used
compared to when it is not. Vastl [33] however does not suffer any statistically
significant deterioration according to either metric (Table 2).

Equation Length Comparison. One hypothesis for how NSR methods come
to overly rely on PEGCF is that the models learn to generate equations that
have too many terms and rely on PEGCF to lessen the contribution of these
extra terms. We can check whether this occurs by examining the lengths of
generated equations compared to our benchmark targets. Table 3 shows compar-
isons between generated and target equation length. In all methods, there is a
significant difference between the two. Valipour’s method [32] tends to generate
overly-long equations while Biggio [4] and Vastl [33] tend to generate overly-
short equations. Figure 2 shows the distribution of coefficient magnitudes across
all methods, showing that while the correct coefficient of 1.0 is frequently pre-
dicted, there are many occurrences of the coefficients predicted being close to
zero or very large.
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Table 2. Median results over all benchmark equations for two different numeric evalua-
tions metrics, with and without optimization techniques. Median is used for all metrics
due to unbounded ranges. The bracketed pairs of values denote the 95% confidence
interval for each median. *** denotes p � 0.001 after the Bonferroni correction is
applied to compensate for the six pairwise comparisons.

NMSE R2

PEGCF no PEGCF PEGCF no PEGCF

Biggio et al 0.20*** 0.43 0.95*** 0.47

(2021) (0.16, 0.25) (0.38, 0.47) (0.93, 0.96) (0.39, 0.54)

Valipour et al 0.03*** 0.52 0.91*** -0.12

(2021) (0.003, 0.07) (0.15, 1.45) (0.29, 0.99) (−1.03, 0.51)

Vastl et al 0.72 0.77 0.38 0.33

(2022) (0.64, 0.84) (0.69, 0.91) (0.31, 0.47) (0.26, 0.42)

Table 3. Comparison of equation length for equations predicted by networks. ***
denotes p � 0.001 after the Bonferroni correction is applied to compensate for the
three pairwise comparisons.

Reference Target Predicted

Biggio 10.625 (10.51, 10.75) *** 7.45 (7.36, 7.54)

Valipour 12.74 (12.69, 12.78) *** 17.92 (17.87, 17.99)

Vastl 11.11 (10.94, 11.26) *** 9.69 (9.41, 10.02)

Fig. 2. Distribution of PEGCF coefficients across all equations generated by impli-
mented NSR methods. The horizontal axis is the magnitude of the coefficients |ci|.
The vertical axis reports the number of appearances of that coefficient magnitude
across all equations.

Comparison to Control Equations. The reliance of NSR methods on
PEGCF can be so great that, in some cases, NSR-generated equations require
no less coefficient fitting effort than is required to fit random equations, Fourier
series, or polynonimals with near-equivalent degrees of freedom (Table 4). With
enough terms, these control equations become competitive with NSR-generated
networks, if numeric metrics are used to the compare them. Here we take compet-
itive to mean that the reported median R2 score is within or above the confidence
interval of the NSR models for that benchmark equation.
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Table 4. Performance of NSR methods and control equations on R2 with PEGCF
for benchmark equations [31]. Highlighted are cases where the control methods are
competitive with the NSR methods, where competitive is defined as the control median
above or equal to the best performing NSR method median. Median is used for all cases
due to unbounded ranges in R2.

Random Fourier Polynomials Valipour Biggio Vastl

Nguyen

1 x3 + x2 + x −0.03 −1.22 1.0 1.0 1.0 1.0

2 x4 + x3 + x2 + x 0.54 −0.09 1.0 1.0 0.99 1.0

3 x5 + x4 + x3 + x2 + x 0.36 −0.21 1.0 1.0 1.0 0.89

4 x6 + x5 + x4 + x3 + x2 + x 0.16 −0.14 1.0 1.0 0.90 0.80

5 sinx2 cosx − 1 0.08 -22.62 0.71 0.51 −3.08 −0.5

6 sinx + sinx + x2 0.40 −1.67 0.48 0.47 0.06 0.07

7 log x + 1 + log x2 + 1 −0.41 1.0 −2.7E+5 1.0 0.98 0.86

8
√
x 0.27 – 0.03 1.0 1.0 -8.92

Complexity spanning

1 sin(x ∗ ex) 0.11 −0.57 0.27 0.14 1.0 −0.30

2 x + log(x4) -0.19 0.86 −7.0E+4 0.98 1.0 1.0

3 1 + x sin( 1
x
) 0.13 0.76 −0.06 0.96 0.63 0.82

4
√
x3 log(x2) −0.40 −0.09 −1.3E+5 −0.57 – –

5 x√
x2+sin x

−0.01 −9.63 0.02 −0.01 −0.33 −0.08

6 x+x3

1+x cos x2 0.91 0.85 0.99 0.92 −1.24 −0.94

7 ex(1+
√
1+x+cos x2)
x2 −13.10 −9.62 −3.2E+6 0.58 0.07 0.26

8 cos
(

x+sin x
x3+x log x2

)
−0.03 0.00 −0.03 0.0 – –

3.2 Symbolic Metrics

Unlike numeric metrics, Table 5 shows that all NSR methods statistically sig-
nificantly outperform all control equations for all symbolic metrics apart from
Valipour [32], which does not outperform random equations when measured with
cross-entropy loss.

4 Discussion

NSR models are not performing as well as the statistics reported in their liter-
ature would seem to imply. First, varied metrics make cross-method compari-
son difficult. Second, PEGCF artificially makes NSR models’ performance seem
better. Third, we show that use of symbolic metrics can help reveal the true
performance of the models though the metric must be carefully chosen. Finally,
we show why it is important to consider both numeric and symbolic metrics.

The relative ranking of methods is fluid. Because of the change in relative
performances when switching metrics, it is near impossible to compare models
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Table 5. A comparison of symbolic metrics on control methods and NSR methods for
a) cross-entropy loss, b) symbolic inequivalence, and c) tree edit distance proportion,
showing the lower values for across all metrics for NSR methods. The bracketed pairs
of values denote the 95% confidence interval for each median. *** denotes p � 0.001
for the NSR model after the Bonferroni correction is applied to compensate for the
27 pairwise comparisons. In all but one case, the pairwise comparison shows the NSR
method out-competing the control methods.

a)

Biggio [3] Valipour [27] Vastl [28]
0.6 (0.6,0.6) 1.96 (1.56, 2.30) 0.48 (0.46, 0.49)

Random *** p¿0.05 ***
1.8 (1.75, 1.85)

Fourier *** *** ***
3.48 (3.48,3.48)

Polynomial *** *** ***
3.67 (3.61,3.72)

b)

Biggio [3] Valipour [27] Vastl [28]
98.99 (98.98, 99.01) 98.95 (98.82, 99.17) 98.31 (98.25, 98.36)

Random *** *** ***
100 (100, 100)

Fourier *** *** ***
100 (100, 100)

Polynomial *** *** ***
100 (100, 100)

c)

Biggio [3] Valipour [27] Vastl [28]
0.18 (0.17, 0.19) 0.07 (0.0, 0.3) 0.05 (0.05, 0.07)

Random *** *** ***
2.83 (2.51, 3.16)

Fourier *** *** ***
14.76 (14.52, 15.0)

Polynomial *** *** ***
3.26 (2.69, 1.02)

cross-method. These metrics, when used on their own, are also problematic in
that arbitrary hyperparameters must be chosen (as in the case of R2 > 0.99 and
R2 > 0.95) or are hidden within software libraries (as in the case of np.isclose).

The decrease in predictive performance of most NSR methods when PEGCF
is not allowed (as indicated by the numeric metrics) indicates that the methods
are not generating equations with appropriate skeletons. We hypothesize that
PEGCF may be performing the bulk of fitting here because NSR learns to either
generate very long equations and then PEGCF removes extra terms by setting
the coefficients on said terms sufficiently small that they contribute negligibly to
numeric metrics, or generate only the part of an equation that contributes most
to the data and the PEGCF emphasizes it with sufficiently large coefficients.
To test this assertion, we measured the difference in mean number of nodes
in the tree representation of the target and NSR generated equations. Shown in
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Table 3, the significant disparity between these lengths for all methods shows that
the trained models do not generate the structurally correct equations. Instead,
good performance of the models is due to PEGCF being able to fit structurally
incorrect equations well to the provided data. Overly long equations imply a
relationship that is not present in data, while equations missing terms fail to
report some relationships. Seen in Table 3, [32] suffers from errors of commission
while [4,33] suffers from errors of omission. Across all methods, Fig. 2 shows
that PEGCF is often “removing” terms from predicted equations by setting the
coefficients for such terms close to zero, and emphasizing contribution from the
correctly predicted terms by setting the coefficients for these to be much larger
than 1. For those methods where there is no significant effect of PEGCF denial,
the networks predict the starting coefficients when generating equations. These
coefficients are then further refined by use of PEGCF after training. Presumably,
the insignificant change observed in both methods are due to the effects of this
during-training coefficient prediction reducing the effects of PEGCF withdrawal.

Symbolic metrics are important in showing how accurately an NSR method
is performing on its primary task: automating the distillation of data into equa-
tions. Unlike numeric metrics, symbolic metrics are not influenced by PEGCF
as they directly compare the symbolic structure of the equation. Of the symbolic
metrics, TED is most meaningful as it has the advantages of absolute equiva-
lence, as well as the ability to reveal a gradient in how “close” two equations are.
A TED of 0 shows absolute equivalence just as symbolic equivalence does, but
TED is not restricted to binary outcomes and could thus show that a particular
change to an NSR method improves or harms it.

Fig. 3. a) Target versus predicted equation trees for the equations x3 +x2 +x and x4 +
x3 + x respectively. b) Graph of aforementioned equations. c) Target versus predicted
equation trees for the equations log(x) + log(x2) and (

√
x2 + x)log(x) respectively. d)

Graph of these equations.
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However, only using symbolic metrics is insufficient to determine how well a
network is performing. While symbolic metrics do hold advantages over numeric
metrics, the opposite is also true. Foremost is that numeric evaluation metrics
do not require a ground truth equation while symbolic ones do. In practice,
after training, most data sets will not have a ground truth equation. In such a
situation only numeric metrics can be used.

Additionally, there are situations in which two equations can be close symbol-
ically but distant numerically. Figure 3a,b shows two such equations. The TED
between x3 + x2 + x and x4 + x3 + x is 2 (Fig. 3a). However, Fig. 3b shows that
the two are quite far numerically, particularly in the negative x range. In a case
like this, it would be particularly important to also consider a numeric metric,
as that would reveal where the network’s failings are more than the symbolic
metric. Figure 3c,d show the opposite case: the TED score is large (Fig. 3c), but
within the tested range, the equations are numerically close (Fig. 3d). In either
case, looking at only the symbolic or numeric metric would be deceptive.

5 Conclusion

NSR is a relatively new field, and like early ML research, it is suffering not just
from a lack of commonly-agreed upon metrics, but an assumption that a single
metric will suffice. Based on the results we obtained, it is important to report
both numeric and symbolic metric scores. We recommend use of median R2 as
a numeric metric and TED (tree edit distance) proportion as a symbolic metric.
R2 is a commonly used, informative, and understandable metric by which to
tell how close predictions made by generated equations are to target data. The
weakness of R2 to outliers is mitigated by use of the median instead of the
mean. TED proportion is similarly informative and understandable in revealing
a generated equation’s structural proximity to a target equation. Together, the
two metrics give a comprehensive view of a NSR model’s accuracy.

Given this, multi-objective optimization for training and testing should be
pursued. Common multi-objective optimization methods may help balance the
importance of numeric and symbolic metrics depending on the goal of the specific
model: some methods may wish to emphasize prediction while others may wish
to reveal discovered relationships. Multi-objective optimization can go beyond
just evaluation metrics; it may allow for training the models against all of the
objectives by using a multi-objective loss function.

We also recommend the NSR field use common training sets. Cross-
method comparison may be possible with standardized metrics, but will still
be obstructed by training and testing on different equations. As such, we recom-
mend the use of the Nguyen equations [31] as well as our benchmark equations
(Table 4) which are designed to offer a diversity of mathematical operations and
incrementally increasing complexity.

The history of machine learning demonstrates that no one metric will ever
perfectly capture the goals of a community. Diminishing returns against techni-
cal metrics like accuracy, over time, revealed to the ML community that other
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metrics like time, compute, and carbon are also relevant. For the NSR field,
acknowledging the importance of numeric and symbolic metrics, as well as stan-
dardization of evaluation equations, is the first step. An early acceptance of
multi-objective metrics and methods could allow the field to accelerate and pre-
pare for as-of-yet undiscovered metrics of import.
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A Appendix

See Table 6.
We use a description length definition of equation complexity: the length of a
node traversal for the expression tree representation after applying SymPy’s
simplify function to the equation. Shannon’s diversity operates on the same

Table 6. Complexities, Shannon’s Diversities for Nguyen benchmark [31] and equations
designed for this paper to have a steady ramp in complexity and diversity.

Number Equation Complexity Shannon’s Diversity

Nguyen-1 x3 + x2 + x 8 1.93

Nguyen-2 x4 + x3 + x2 + x 11 2.17

Nguyen-3 x5x4 + x3 + x2 + x 14 2.34

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 17 2.48

Nguyen-5 sinx2 cosx − 1 9 2.15

Nguyen-6 sinx + sinx + x2 9 2.05

Nguyen-7 log x + 1 + log x2 + 1 11 2.34

Nguyen-8
√
x 3 1.10

C.S.-1 sin(x ∗ ex) 5 1.61

C.S.-2 x + log(x4) 6 1.73

C.S.-3 1 + x sin( 1
x
) 8 2.03

C.S.-4
√
x3 log(x2) 10 2.25

C.S.-5 x√
x2+sin x

10 2.15

C.S.-6 x+x3

1+x cos x2 14 2.40

C.S.-7 ex(1+
√
1+x+cos x2)
x2 17 2.71

C.S.-8 cos
(

x+sin x
x3+x log x2

)
19 2.76
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tree representation nodes, and is defined as

H = −
n∑

i=1

pi ln(pi) (5)

where pi is the relative incidence of the ith node label.

B Ethics

Symbolic regression has far reaching applications, as any field that requires the
collection of data that then needs to be understood in a compact format can
benefit from the automatic distillation of said data into an equation. It is the
belief of the authors that the ethics of said applications is an important subject
to consider. As an application of AI that uses neural networks, it suffers from
the general ethics concerns that AI does: bias in both data and perception of
results, as well as potential for discriminatory practices.

A key ethical issue in all AI is bias and discrimination. Like other AI net-
works, symbolic regression networks could easily perpetuate biases and discrim-
inatory practices if trained on biased or incomplete datasets. As an equation
that describes a biased dataset would inherently be biased, SR networks could
produce equations that accurately describe biased data without it being clear
that there is a bias at all. Equations are almost never the true end goal of ana-
lyzing data. Instead, said equations are used to further understand the data
it describes. The broad applications of neural SR are a key way that poten-
tial discriminatory data and practices could be introduced. Potential underlying
biases in data could lead to networks that produce equations that are used to
perpetuate discriminatory practices.

The ethical concerns that are more unique to SR are generally centered
around the people who will be using the network and its resulting equations.
There is a cognitive bias toward authority in people, and generally this bias is
toward a trust in perceived authority. Through schooling, we have been trained
to trust math as an authority, and as SR produces equations- which are math-
users will be biased toward trusting the equation without verifying accuracy.
Through this, SR can create an illusion of authority where there may not be
one. Another user bias that must be considered is the accessibility of SR net-
works. By nature, an SR network is geared toward the mathematically literate,
which presents an exclusionary bias toward people who are not.

Misunderstanding NSR methods and results, such as underestimating the
effects of PEGCF discussed in this paper, can exacerbate these problems. Mis-
understanding the potential flaws in the validity of the results contributes toward
users finding authority in the equations produced regardless of the potential lack
of any true accuracy. Our paper seeks to bring to light what contributes to NSR
performance with explicit comparisons and test. In doing so, it has the potential
to help prevent the false authority that NSR produced equations could cause by
making users aware of the potential flaws. Overall, it will be critical to continue
to address ethical issues and ensure any research in this field is done carefully and
with full awareness of necessary precautions around the potential applications.
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